Application and Development of Autonomous Robots in Concrete Construction: Challenges and Opportunities
Abstract
:1. Introduction
2. Development Status of Concrete Construction Robots
2.1. Concrete Distribution Robots
2.1.1. Concrete Pouring Construction Robot
2.1.2. Shotcrete Construction Robot
2.2. Concrete Leveling and Compaction Robots
2.3. Concrete Floor Finishing Robots
2.3.1. Semi-Autonomous Concrete Floor Finishing Robot
2.3.2. Autonomous Concrete Floor Finishing Robot
2.4. Concrete Surface Painting Robots
2.5. Three-Dimensional Printing Construction Robots for Additive Manufacturing
2.6. Construction-Used Surveillance Robots
3. Discussion
3.1. Challenges and Opportunities
3.1.1. Increased Automation
3.1.2. Miniaturization
3.1.3. High Precision
3.1.4. Development of the Inter-Robot Coordination System
3.2. Autonomous Robots in Concrete Construction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liang, C.J.; Wang, X.; Kamat, V.R.; Menassa, C.C. Human–Robot Collaboration in Construction: Classification and Research Trends. J. Constr. Eng. M. 2021, 147, 03121006. [Google Scholar] [CrossRef]
- Watts, J. Concrete: The most destructive material on Earth. Guardian 2019, 25, 1–9. [Google Scholar]
- Lehne, J.; Preston, F. Making Concrete Change: Innovation in Low-Carbon Cement and Concrete; Chatham House for the Royal Institute of International Affairs: London, UK, 2018; ISBN 978-1-78413-272-9. [Google Scholar]
- Lee, H.; Choi, S. Robot Based Concrete Technology. Mag. Concrete. Res. 2015, 27, 36–40. [Google Scholar]
- Bock, T.; Thomas, L. Construction Robots: Volume 3: Elementary Technologies and Single-Task Construction Robots; Cambridge University Press: Cambridge, UK, 2016; pp. 342–348. [Google Scholar]
- Balaguer, C.; Abderrahim, M. Robotics and Automation in Construction; BoD–Books on Demand: Norderstedt, Germany, 2008. [Google Scholar]
- Bock, T.; Thomas, L. Site Automation; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Pan, M.; Linner, T.; Pan, W.; Cheng, H.M.; Bock, T. Influencing factors of the future utilisation of construction robots for buildings: A Hong Kong perspective. J. Build. Eng. 2020, 30, 101220. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.K.; Shiraishi, T.; Tanaka, T. Safe breakwater-following control of an autonomous underwater vehicle with non-zero forward velocity. Automat. Constr. 2007, 16, 778–786. [Google Scholar] [CrossRef]
- Marti, E.; De Miguel, M.A.; Garcia, F.; Perez, J. A Review of Sensor Technologies for Perception in Automated Driving. IEEE Intell. Transp. Syst. Mag. 2019, 11, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Schaffers, H.; Komninos, N.; Pallot, M.; Trousse, B.; Nilsson, M.; Oliveira, A. Smart cities and the future internet: Towards cooperation frameworks for open innovation. In The Future Internet—Future Internet Assembly 2011: Achievements and Technological Promises; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6656, pp. 431–446. [Google Scholar]
- Minoli, D.; Sohraby, K.; Occhiogrosso, B. IoT Considerations, Requirements, and Architectures for Smart Buildings—Energy Optimization and Next Generation Building Management Systems. IEEE Internet Things 2017, 4, 269–283. [Google Scholar] [CrossRef]
- Jia, M.D.; Komeily, A.; Wang, Y.R.; Srinivasan, R.S. Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Automat. Constr. 2019, 101, 111–126. [Google Scholar] [CrossRef]
- Pan, M.; Linner, T.; Pan, W.; Cheng, H.M.; Bock, T. Structuring the context for construction robot development through integrated scenario approach. Automat. Constr. 2020, 114, 103174. [Google Scholar] [CrossRef] [Green Version]
- Balzan, A.; Aparicio, C.C.; Trabucco, D. Robotics in construction: State-of-art of on-site advanced devices. Int. J. High-Rise Build. 2020, 9, 95–104. [Google Scholar] [CrossRef]
- Shayesteh, S.; Jebelli, H. Investigating the Impact of Construction Robots Autonomy Level on Workers’ Cognitive Load. In Canadian Society of Civil Engineering Annual Conference, Singapore, 2021; Springer: Singapore, 2021; Volume 239. [Google Scholar] [CrossRef]
- Bock, T. Construction robotics. Auton. Robot. 2007, 22, 201–209. [Google Scholar] [CrossRef]
- Li, D.; Chen, B.; Yu, W.; Shi, Y.Z.; Lu, S. Particle swarm-based optimization method for load distribution of concrete placing robot. In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022; pp. 5806–5811. [Google Scholar] [CrossRef]
- Saidi, K.S.; Bock, T.; Georgoulas, C. Robotics in construction. In Springer Handbook of Robotics; Springer: Cham, Switzerland, 2016; pp. 1493–1520. [Google Scholar]
- Elattar, S.M.S. Automation and robotics in construction: Opportunities and challenges. Emir. J. Eng. Res. 2008, 13, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Kolosov, A.; Smolyaninov, A.; Kargashilov, D.; Spitsov, D. Development of an automatic control system for the position of a trowel for a robotic concrete paving complex. Transp. Res. Procedia 2022, 63, 1621–1630. [Google Scholar] [CrossRef]
- Seyrfar, A.; Hossein, A.; Ibrahim, O. Robotics and Automation in Construction (RAC): Priorities and Barriers Toward Productivity Improvement in Civil Infrastructure Projects. In Automation and Robotics in the Architecture, Engineering, and Construction Industry; Jebelli, H., Habibnezhad, M., Shayesteh, S., Asadi, S., Lee, S., Eds.; Springer: Cham, Switzerland, 2022; pp. 59–71. [Google Scholar] [CrossRef]
- Taha, N.; Walzer, A.N.; Ruangjun, J.; Lloret-fritschi, E.; Gramazio, F.; Kohler, M. Robotic AeroCrete A Novel Robotic Spraying And Surface Treatment Technology For The Production of Slender Reinforced Concrete Elements. In Proceedings of the Architecture in the Age of the 4th Industrial Revolution, Porto, Portugal, 11–13 September 2019; Volume 3, pp. 245–254. [Google Scholar]
- Kovačić, Z.; Balać, B.; Flegarić, S.; Brkić, K.; Orsag, M. Light-weight mobile robot for hydrodynamic treatment of concrete and metal surfaces. In Proceedings of the 1st International Conference on Applied Robotics for the Power Industry, Montreal, QC, Canada, 5–7 October 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Lindemann, H.E.; Petri, J.Ö.; Neudecker, S.T.; Kloft, H.A. Process chain for the robotic controlled production of non-standard, double-curved, fibre-reinforced concrete panels with an adaptive mould. In Fabricate: Rethinking Design and Construction, 2017; UCL Press: London, UK, 2017; pp. 218–223. [Google Scholar]
- Wang, G.; Hua, X.; Xu, J.; Song, L.; Chen, K. A deep learning based automatic surface segmentation algorithm for painting large-size aircraft with 6-DOF robot. Assembly. Autom. 2019, 40, 199–210. [Google Scholar] [CrossRef]
- Hack, N.; Lauer, W.V. Mesh-Mould: Robotically Fabricated Spatial Meshes as Reinforced Concrete Formwork. Archit. Des. 2014, 84, 44–53. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Nerella, V.N.; Will, F.; Näther, M.; Otto, J.; Krause, M. Large-scale digital concrete construction—CONPrint3D concept for on-site, monolithic 3D-printing. Autom. Constr. 2019, 107, 102933. [Google Scholar] [CrossRef]
- Hager, I.; Golonka, A.; Putanowicz, R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? Procedia. Eng. 2016, 151, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Long, W.J.; Tao, J.L.; Lin, C.; Gu, Y.C.; Mei, L.; Duan, H.B.; Xing, F. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing. J. Clean. Prod. 2019, 239, 118054. [Google Scholar] [CrossRef]
- Parada-Salado, J.G.; Ortega-Garcia, L.E.; Ayala-Ramirez, L.F.; Perez-Pinal, F.J.; Herrera-Ramirez, C.A.; Padilla-Medina, J.A. A Low-Cost Land Wheeled Autonomous Mini-Robot for In-Door Surveillance. IEEE Lat. Am. Trans. 2018, 16, 1298–1305. [Google Scholar] [CrossRef]
- Asadi, K.; Kalkunte Suresh, A.; Ender, A.; Gotad, S.; Maniyar, S.; Anand, S.; Noghabaei, M.; Han, K.; Lobaton, E.; Wu, T. An Integrated UGV-UAV System for Construction Site Data Collection. Autom. Constr. 2020, 112, 103068. [Google Scholar] [CrossRef]
- Ding, Y.; Xin, B.; Chen, J. A Review of Recent Advances in Coordination Between Unmanned Aerial and Ground Vehicles. Unmanned Syst. 2021, 9, 97–117. [Google Scholar] [CrossRef]
- Czarnowski, J.; Dąbrowski, A.; Maciaś, M.; Główka, J.; Wrona, J. Technology Gaps in Human-Machine Interfaces for Autonomous Construction Robots. Autom. Constr. 2018, 94, 179–190. [Google Scholar] [CrossRef]
- Melenbrink, N.; Werfel, J.; Menges, A. On-Site Autonomous Construction Robots: Towards Unsupervised Building. Autom. Constr. 2020, 119, 103312. [Google Scholar] [CrossRef]
- Paneru, S.; Jeelani, I. Computer Vision Applications in Construction: Current State, Opportunities & amp; Challenges. Autom. Constr. 2021, 132, 103940. [Google Scholar] [CrossRef]
- Far, H.; Nejadi, S.; Aghayarzadeh, M. Experimental investigation on in-plane lateral stiffness and degree of ductility of composite PVC reinforced concrete walls. Struct. Concr. 2021, 22, 2126–2137. [Google Scholar] [CrossRef]
- Pan, W. Methodological Development for Exploring the Potential to Implement On-Site Robotics and Automation in the Context of Public Housing Construction in Hong Kong. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2020. [Google Scholar]
- Girmscheid, G.; Moser, S. Fully automated shotcrete robot for rock support. Comput-Aided. Civ. Inf. 2001, 16, 200–215. [Google Scholar] [CrossRef]
- IndraMART. RV-12 Spreader Putzmeister Concrete Pumps. 2008. Available online: https://www.indiamart.com/proddetail/rv-12-spreader-putzmeister-concrete-pumps-21139195648.html (accessed on 16 November 2022).
- Shyam, S.; Kaul, S.; Jesudoss, J.; Babu, N. Improving the efficiency of stationary concrete pumps using whitworth quick return mechanism. In IOP Conference Series: Materials Science and Engineering, 2021; IOP Publishing: Bristol, UK, 2021; Volume 1123, p. 012020. [Google Scholar] [CrossRef]
- SOMERO. Line Dragon. 2019. Available online: https://www.somero.com/products/materials-placement/sp-16-2/ (accessed on 16 November 2022).
- LIEBHERR. 140 D-K Stage 1 Crawler Concrete Pump. 2020. Available online: https://www.liebherr.com/en/sgp/products/construction-machines/concrete-technology/concrete-pumps/stationary-concrete-pumps/details/85726.html (accessed on 16 November 2022).
- Wanner, J.; Sawodny, O. Tool-center-point control of a flexible link concrete pump with hydraulic limitations using quadratic programming. In Proceedings of the IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada, 22–26 August 2019; pp. 561–566. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Liu, Y. Fatigue life prediction for boom structure of concrete pump truck. Eng. Fail. Anal. 2016, 60, 176–187. [Google Scholar] [CrossRef]
- Kang, X.D.; Huang, G.; Cao, X.L.; Zhou, X. Trajectory planning for concrete pump truck based on intelligent hill climbing and genetic algorithm. Trans. Tech. Publ. Ltd. 2012, 127, 360–367. [Google Scholar] [CrossRef]
- Dwivedy, S.K.; Eberhard, P. Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 2006, 41, 749–777. [Google Scholar] [CrossRef]
- Benosman, M.; Le Vey, G. Control of flexible manipulators: A survey. Robotica 2004, 22, 533–545. [Google Scholar] [CrossRef]
- Bright Dream Robotics. The Polishing Rider. 2022. Available online: https://www.bzlrobot.com/contents/3/88.html (accessed on 16 November 2022).
- Yang, J.; Vela, P.; Teizer, J. Vision-Based Tower Crane Tracking for Understanding Construction Activity. J. Comput. Civ. Eng. 2014, 28, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Shapira, A.; Rosenfeld, Y.; Mizrahi, I. Vision system for tower cranes. J. Constr. Eng. M. 2008, 134, 320–332. [Google Scholar] [CrossRef]
- Galan, I.; Baldermann, A.; Kusterle, W.; Dietzel, M.; Mittermayr, F. Durability of shotcrete for underground support– Review and update. Constr. Build. Mater. 2019, 202, 465–493. [Google Scholar] [CrossRef]
- Zhu, C.; Zhou, N.; Guo, Y.; Li, M.; Cheng, Q. Effect of Doped Glass Fibers on Tensile and Shear Strengths and Microstructure of the Modified Shotcrete Material: An Experimental Study and a Simplified 2D Model. Minerals 2021, 11, 1053. [Google Scholar] [CrossRef]
- Agulló, L.; García, T.; Aguado, A.; Yubero, E. Evaluation of isotropy in wet-mix sprayed concrete. Mater. Construcc. 2009, 59, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhou, Z.; Chen, L.; Liu, G.; Xiao, W. Research on Dust Suppression Technology of Shotcrete Based on New Spray Equipment and Process Optimization. Adv. Civ. Eng. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Liu, G.; Cheng, W.; Chen, L.; Pan, G.; Liu, Z. Rheological properties of fresh concrete and its application on shotcrete. Constr. Build. Mater. 2020, 243, 118180. [Google Scholar] [CrossRef]
- Nof, S.Y. (Ed.) Springer Handbook of Automation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; pp. 1063–1078. [Google Scholar] [CrossRef]
- Wangler, T.; Roussel, N.; Bos, F.P.; Salet, T.A.M.; Flatt, R.J. Digital Concrete: A Review. Cem. Concr. Res. 2019, 123, 105780. [Google Scholar] [CrossRef]
- Albers, J.; Russell, S.; Stewart, K. Concrete leveling techniques–a comparative ergonomic assessment. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2004, 48, 1349–1353. [Google Scholar] [CrossRef]
- Schlumpf, J.; Bicher, B.; Schwoon, O. Sika Concrete Handbook; Sika: Zurich, Schwitzerland, 2020; p. 236. [Google Scholar]
- Navon, R. Conceptual design of a flooring robot: Development methodology and results. Autom. Constr. 1995, 4, 225–238. [Google Scholar] [CrossRef]
- Orlemann, E.C. Caterpillar Chronicle: History of the Greatest Earthmovers; Motorbooks International: Saint Paul, MN, USA, 2000; p. 168. ISBN 0760336733. [Google Scholar]
- Floormaster. Clapa Floor Master Robot 130. 2021. Available online: https://floormaster.eu/index.php/en/#technicaldata (accessed on 16 November 2022).
- Ifdesign. Basement Concrete Troweling and Leveling Robot. 2021. Available online: https://ifdesign.com/en/winner-ranking/project/basement-concrete-troweling-and-leveling-robot/314447 (accessed on 16 November 2022).
- Fortepiso. LASER SCREED. 2018. Available online: https://www.fortepiso.com.br/laser-screed (accessed on 16 November 2022).
- Mehta, P.K. Advancements in concrete technology. Concr. Int. 1999, 21, 27–33. [Google Scholar]
- Kashani, A.; Ngo, T. Production and placement of self-compacting concrete. In Self-Compacting Concrete: Materials, Properties and Applications; Siddique, R., Ed.; Woodhead Publishing: Cambridgeshire, UK, 2020; pp. 65–81. [Google Scholar] [CrossRef]
- Bartos, P. Fresh Concrete, Properties and Tests; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1992; p. 305. [Google Scholar]
- Corporation, A.E. Polishing Rider // RP245. 2020. Available online: https://www.alleneng.com/rp245 (accessed on 16 November 2022).
- Robotics, B.D. The Floor Grinding Robot. 2022. Available online: https://www.bzlrobot.com/contents/3/84.html (accessed on 16 November 2022).
- Woo, K.S.; Lee, H.G.; Kim, J.Y.; Song, J.B. Experiment of Concrete Floor Finishing Robot. In Proceedings of the 2004 International Conference on Control, Automation, and Systems (ICCAS 2004), Bangkok, Thailand, 25–27 August 2004; pp. 1480–1484. [Google Scholar]
- Cho, G.; Chu, B. Performance Evaluation of Concrete Polishing Robot with Omnidirectional Mobile Mechanism. J. Korean Soc. Manuf. Technol. Eng. 2016, 25, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Nyemba, W.R.; Shangwa, N.L.; Chinguwa, S.; Mbohwa, C. Conceptualization, development and design of a mortar spraying machine. Procedia CIRP. 2020, 91, 396–401. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Liang, Y.; Wey, C.M.; Chen, J.C. Technological enhancement and creation of a computer-aided construction system for the shotcreting robot. Automa. Constr. 2001, 10, 517–526. [Google Scholar] [CrossRef]
- Xu, F.; Dai, S.; Jiang, Q.; Wang, X. Developing a Climbing Robot for Repairing Cables of Cable-Stayed Bridges. Autom. Constr. 2021, 129, 103807. [Google Scholar] [CrossRef]
- Nahmens, I.; Ikuma, L.H. Effects of Lean Construction on Sustainability of Modular Homebuilding. J. Archit. Eng. 2012, 18, 155–163. [Google Scholar] [CrossRef]
- Qian, J.; Ma, L.; Zhang, Z. Gait Programming for Multi-Legged Robot Climbing on Walls and Ceilings; INTECH Open Access Publisher: London, UK, 2007; p. 544. [Google Scholar]
- Warszawski, A.; Rosenfeld, Y. Robot for interior-finishing works in building: Feasibility analysis. J. Constr. Eng. Manag. 1994, 120, 132–151. [Google Scholar] [CrossRef]
- Kahane, B.; Rosenfeld, Y. Balancing Human-and-Robot Integration in Building Tasks. Comput-Aided Civ. Infrastruct. Eng. 2004, 19, 393–410. [Google Scholar] [CrossRef]
- Asadi, E.; Li, B.; Chen, I.M. Pictobot: A cooperative painting robot for interior finishing of industrial developments. IEEE Robot. Autom. Mag. 2018, 25, 82–94. [Google Scholar] [CrossRef]
- Cho, J.W.; Yoo, H.S.; Choi, S.H.; Kim, Y.S. Wind resistance performance analysis of automated exterior wall painting robot for apartment buildings. KSCE J. Civ. Eng. 2015, 19, 510–519. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, L.; Wang, H.; Zeng, W.; Ding, Y.; Hu, T.; Hu, J. Intelligent spraying robot for building walls with mobility and perception. Automa. Constr. 2022, 139, 104270. [Google Scholar] [CrossRef]
- Juan, S.H.; Tur, J.M.M. Tensegrity frameworks: Static analysis review. Mech. Mach. Theory 2008, 43, 859–881. [Google Scholar] [CrossRef] [Green Version]
- Seffen, K.A.; You, Z.; Pellegrino, S. Folding and deployment of curved tape springs. Int. J. Mech. Sci. 2000, 42, 2055–2073. [Google Scholar] [CrossRef]
- Gan, W.W.; Pellegrino, S. Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2006, 220, 1045–1056. [Google Scholar] [CrossRef]
- Xu, L.J.; Tian, G.Y.; Duan, Y.; Yang, S.X. Inverse kinematic analysis for triple-octahedron variable-geometry truss manipulators. J. Mech. Eng. C-J. Mec. 2001, 215, 247–251. [Google Scholar] [CrossRef]
- Tur, J.M.; Juan, S.H. Theory, Tensegrity frameworks: Dynamic analysis review and open problems. Mech. Mach. Theory 2009, 44, 1–18. [Google Scholar] [CrossRef]
- Tarnai, T.J. Zero stiffness elastic structures. Int. J. Mech. Sci. 2003, 45, 425–431. [Google Scholar] [CrossRef]
- Wei, G.; Ding, X.; Dai, J.S. Mobility and Geometric Analysis of the Hoberman Switch-Pitch Ball and Its Variant. J. Mech. Robot. 2010, 2, 031010. [Google Scholar] [CrossRef]
- Liu, S.Y.; Chen, Y. Theory, Myard linkage and its mobile assemblies. Mech. Mach. Theory 2009, 44, 1950–1963. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, B.; Yu, J. Analysis of kinematics/statics and workspace of a 2 (SP+ SPR+ SPU) serial–parallel manipulator. Multibody Syst. Dyn. 2009, 21, 361–374. [Google Scholar] [CrossRef]
- Agrawal, S.K.; Kumar, S.; Yim, M. Polyhedral single degree-of-freedom expanding structures: Design and prototypes. J. Mech. Des. 2002, 124, 473–478. [Google Scholar] [CrossRef]
- Chen, Y.; You, Z.; Tarnai, T. Threefold-symmetric Bricard Linkages for Deployable Structures. Int. J. Solids Struct. 2005, 42, 2287–2301. [Google Scholar] [CrossRef] [Green Version]
- Naticchia, B.; Giretti, A.; Carbonari, A. Set up of an automated multi-colour system for interior wall painting. Int. J. Adv. Robot. Syst. 2007, 4, 50. [Google Scholar] [CrossRef] [Green Version]
- Grassi, M.; Naticchia, B.; Giretti, A.; Carbonari, A. Development of an automatic four-color spraying device carried by a robot arm. In Proceedings of the 24th International Symposium on Automation and Robotics in construction (ISARC), Madras, India, 19–21 September 2007; pp. 19–21. [Google Scholar]
- Naticchia, B.; Giretti, A.; Carbonari, A.J. Set up of a robotized system for interior wall painting. In Proceedings of the 23rd International Symposium on Automation and Robotics in Construction (ISARC), Tokyo, Japan, 3–5 October 2006; pp. 3–5. [Google Scholar]
- Hadfield, M.D.; Groshev, E.; Chitnis, R.; Abbeel, P. Modular task and motion planning in belief space. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 4991–4998. [Google Scholar] [CrossRef]
- Cui, Z.W.; Sun, Z.G.; Zhang, W.Z.; Chen, Q. Permanent Magnet Absorbed Repairing End Effector for Wall-Climbing Robot. In 2015 International Conference on Electrical, Automation and Mechanical Engineering (EAME); Atlantis Press: Paris, France, 2015; pp. 105–108. [Google Scholar] [CrossRef]
- Li, J.; Gao, X.; Fan, N.; Li, K.; Jiang, Z.; Jiang, Z. Adsorption performance of sliding wall climbing robot. Chin. J. Mech. Eng. 2010, 23, 1. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, H.; Fang, L.; Zhao, M. Fault detection and identification based on combining logic and model in a wall-climbing robot. J. Control Theory Appl. 2009, 7, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Wang, J.; Wang, X. A critical review of the use of 3-D printing in the construction industry. Autom. Constr. 2016, 68, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Meng, W.; Wang, P.; Qian, D.; Cheng, W.; Jia, Z. Research Article Research Progress of Concrete 3D Printing Technology and Its Equipment System, Material, and Molding Defect Control. J. Eng. Ny. 2022, 2022, 6882386. [Google Scholar] [CrossRef]
- Gosselin, C.; Duballet, R.; Roux, P.; Gaudillière, N.; Dirrenberger, J.; Morel, P. Large-scale 3D printing of ultra-high performance concrete—A new processing route for architects and builders. Mater. Des. 2016, 100, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Buswell, R.A.; Le, T.T.; Austin, S.A.; Gibb, A.G.F.; Thorpe, T. Developments in construction-scale additive manufacturing processes. Autom. Constr. 2012, 21, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Lowke, D.; Dini, E.; Perrot, A.; Weger, D.; Gehlen, C.; Dillenburger, B. Particle-bed 3D printing in concrete construction—Possibilities and challenges. Cem. Concr. Res. 2018, 112, 50–65. [Google Scholar] [CrossRef]
- Castrejon, P.J.; Baxter, W.R.; Morgan, J.; Temple, S.; Martin, G.D.; Hutchings, I.M. Future, opportunities and challenges of inkjet technologies. At. Spray. 2013, 23, 541–565. [Google Scholar] [CrossRef] [Green Version]
- De Gans, B.J.; Duineveld, P.C.; Schubert, U.S. Inkjet Printing of Polymers: State of the Art and Future Developments. Adv. Mater. 2004, 16, 203–213. [Google Scholar] [CrossRef]
- Khoshnevis, B. Contour crafting-state of development. In Proceedings of the Solid Freeform Fabrication Proceedings, Austin, TX, USA, 9–11 August 1999; pp. 743–750. [Google Scholar]
- Khoshnevis, B. Toward Total Automation of On-Site Construction—An Integrated Approach Based on Contour Crafting. In Proceedings of the 20th International Symposium on Automation and Robotics in Construction (ISARC), Eindhoven, The Netherlands, 21–24 September 2003; pp. 61–66. [Google Scholar]
- Lim, S.; Le, T.; Webster, J.; Buswell, R.; Austin, A.; Gibb, A.; Thorpe, T. Fabricating construction components using layered manufacturing technology. In Proceedings of the Global Innovation in Construction Conference, Loughborough, UK, 13–16 September 2009; pp. 512–520. [Google Scholar]
- Cesaretti, G.; Dini, E.; De Kestelier, X.; Colla, V.; Pambaguian, L. Building components for an outpost on the lunar soil by means of a novel 3D printing technology. Acta Astronaut. 2014, 93, 430–450. [Google Scholar] [CrossRef]
- Ham, Y.; Han, K.K.; Lin, J.J.; Golparvar-Fard, M. Visual Monitoring of Civil Infrastructure Systems via Camera-Equipped Unmanned Aerial Vehicles (UAVs): A Review of Related Works. Vis. Eng. 2016, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Freeman, M.R.; Kashani, M.M.; Vardanega, P.J. Aerial Robotic Technologies for Civil Engineering: Established and Emerging Practice. J. Unmanned Veh. Syst. 2021, 9, 75–91. [Google Scholar] [CrossRef]
- Siebert, S.; Teizer, J. Mobile 3D Mapping for Surveying Earthwork Projects Using an Unmanned Aerial Vehicle (UAV) System. Autom. Constr. 2014, 41, 1–14. [Google Scholar] [CrossRef]
- Fleming, K.L.; Hashash, Y.M.A.; McLandrich, S.; O’Riordan, N.; Riemer, M. Novel Technologies for Deep-Excavation Digital Construction Records. Pract. Period. Struct. Des. Constr. 2016, 21, 05016002. [Google Scholar] [CrossRef]
- Zollmann, S.; Hoppe, C.; Kluckner, S.; Poglitsch, C.; Bischof, H.; Reitmayr, G. Augmented Reality for Construction Site Monitoring and Documentation. Proc. IEEE 2014, 102, 137–154. [Google Scholar] [CrossRef]
- Fernandez Galarreta, J.; Kerle, N.; Gerke, M. UAV-Based Urban Structural Damage Assessment Using Object-Based Image Analysis and Semantic Reasoning. Nat. Hazards Earth Syst. Sci. 2015, 15, 1087–1101. [Google Scholar] [CrossRef] [Green Version]
- Yi, W.; Sutrisna, M. Drone Scheduling for Construction Site Surveillance. Comput. Civ. Infrastruct. Eng. 2021, 36, 3–13. [Google Scholar] [CrossRef]
- Liu, P.; Chen, A.Y.; Huang, Y.-N.; Han, J.-Y.; Lai, J.-S.; Kang, S.-C.; Wu, T.-H.; Wen, M.-C.; Tsai, M.-H. A Review of Rotorcraft Unmanned Aerial Vehicle (UAV) Developments and Applications in Civil Engineering. Smart Struct. Syst. 2014, 13, 1065–1094. [Google Scholar] [CrossRef]
- Kim, P.; Park, J.; Cho, Y.K.; Kang, J. UAV-Assisted Autonomous Mobile Robot Navigation for as-Is 3D Data Collection and Registration in Cluttered Environments. Autom. Constr. 2019, 106, 102918. [Google Scholar] [CrossRef]
- Elghaish, F.; Matarneh, S.; Talebi, S.; Kagioglou, M.; Hosseini, M.R.; Abrishami, S. Toward Digitalization in the Construction Industry with Immersive and Drones Technologies: A Critical Literature Review. Smart Sustain. Built Environ. 2021, 10, 345–363. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C. Applications of Multirotor Drone Technologies in Construction Management. Int. J. Constr. Manag. 2019, 19, 401–412. [Google Scholar] [CrossRef]
- Yang, Z.; Lee, W.C.; Chan, H.N.; Ge, M. A Real-Time Tunnel Surface Inspection System Using Edge-AI on Drone. In Proceedings of the 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, China, 7–10 August 2022; pp. 749–754. [Google Scholar]
- Dissanayake, M.W.M.G.; Newman, P.; Clark, S.; Durrant-Whyte, H.F.; Csorba, M. A Solution to the Simultaneous Localization and Map Building (SLAM) Problem. IEEE Trans. Robot. Autom. 2001, 17, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Wehner, M.; Truby, R.L.; Fitzgerald, D.J.; Mosadegh, B.; Whitesides, G.M.; Lewis, J.A.; Wood, R.J. An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots. Nature 2016, 536, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Amer, N.H.; Zamzuri, H.; Hudha, K.; Kadir, Z.A. Modelling and Control Strategies in Path Tracking Control for Autonomous Ground Vehicles: A Review of State of the Art and Challenges. J. Intell. Robot. Syst. 2017, 86, 225–254. [Google Scholar] [CrossRef]
- Fragapane, G.; Ivanov, D.; Peron, M.; Sgarbossa, F.; Strandhagen, J.O. Increasing Flexibility and Productivity in Industry 4.0 Production Networks with Autonomous Mobile Robots and Smart Intralogistics. Ann. Oper. Res. 2022, 308, 125–143. [Google Scholar] [CrossRef]
- Zohaib, M.; Pasha, S.M.; Javaid, N.; Iqbal, J. IBA: Intelligent Bug Algorithm—A Novel Strategy to Navigate Mobile Robots Autonomously. In Communications in Computer and Information Science; Springer: Cham, Switzerland, 2014; pp. 291–299. [Google Scholar]
- Iqbal, J.; Heikkila, S.; Halme, A. Tether Tracking and Control of ROSA Robotic Rover. In Proceedings of the 2008 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December 2008; pp. 689–693. [Google Scholar]
- Melenbrink, N.; Werfel, J. Autonomous Sheet Pile Driving Robots for Soil Stabilization. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 339–345. [Google Scholar]
No. | Institutions | Country | Product Types | Website |
---|---|---|---|---|
1 | Ai Build | UK | 3D printing | https://www.ai-build.com/ (accessed on 15 November 2022) |
2 | Anex Industrial Hong Kong Limited | China | Rendering | http://www.automaticrenderingmachine.com/ (accessed on 15 November 2022) |
3 | Apis Cor | Russia | 3D printing | https://www.apis-cor.com/ (accessed on 15 November 2022) |
4 | CyBe Construction | Netherlands | 3D printing | https://cybe.eu/ (accessed on 15 November 2022) |
5 | Hazama Ando | Japan | Floor troweling | http://www.ad-hzm.co.jp/english/ (accessed on 15 November 2022) |
6 | IHI | Japan | Concrete transportation | https://www.ihi.co.jp/en/ (accessed on 15 November 2022) |
7 | Konoike Construction | Japan | Concrete distribution and transportation | http://www.konoike.co.jp/e_konoike/ (accessed on 15 November 2022) |
8 | Lomar SRL | Italy | Screeding | https://www.lomarsrl.it/ (accessed on 15 November 2022) |
9 | Maeda | Japan | Automated construction system | https://www.maeda.co.jp/english.html (accessed on 15 November 2022) |
10 | M.A.i. GmbH | Germany | Compacting and leveling; 3D printing | https://www.m-a-i.de/en/ (accessed on 15 November 2022) |
11 | Mitsubishi Heavy Industry | Japan | Concrete distribution and transportation | https://www.mhi.com/ (accessed on 15 November 2022) |
12 | NCC | USA | Automated construction system | https://www.nccconstruction.com/ (accessed on 15 November 2022) |
13 | Nishimatsu | Japan | Concrete transportation | https://www.nishimatsu.co.jp/eng/ (accessed on 15 November 2022) |
14 | Obayashi | Japan | Concrete distribution and transportation; floor compaction; floor finishing | https://www.obayashi.co.jp/en/ (accessed on 15 November 2022) |
15 | Putzmeister AG | Germany | Concrete distribution | https://www.putzmeister.com/web/americas (accessed on 15 November 2022) |
16 | Shimizu | Japan | Concrete surface removing; concrete floor finishing | https://www.shimz.co.jp/en/ (accessed on 15 November 2022) |
17 | Summerfiel | USA | Automated construction system | https://summerfieldconstruction.com/ (accessed on 15 November 2022) |
18 | Takenaka | Japan | Concrete distribution; concrete screeding and compaction; concrete floor finishing | https://www.takenaka.co.jp/takenaka_e/ (accessed on 15 November 2022) |
19 | Tokyo Keiki | Japan | Floor troweling | https://www.tokyoconstructions.com/ (accessed on 15 November 2022) |
20 | Tokyo Construction | Japan | Wall surface operation; concrete distribution | http://www.tokyokeiki.co.jp/ (accessed on 15 November 2022) |
21 | Yingchuang Building Technique Co. | China | 3D printing | http://www.winsun3d.com/en (accessed on 15 November 2022) |
22 | Kajima | Japan | Concrete distribution; concrete floor finishing | https://www.kajima.co.jp/ (accessed on 15 November 2022) |
23 | Fujita | Japan | Concrete floor leveling | https://www.fujita.com/technologies/ (accessed on 15 November 2022) |
24 | Loughborough University | UK | 3D printing | https://www.sciencedirect.com/science/article/pii/S0926580511001221?via%3Dihub (accessed on 15 November 2022) |
25 | Materialise | Belgium | 3D printing | https://www.materialise.com/ (accessed on 15 November 2022) |
26 | Oak Ridge National Laboratory | USA | 3D printing | https://www.ornl.gov/ (accessed on 15 November 2022) |
27 | COBOD | The Danish | 3D printing | https://cobod.com/ (accessed on 15 November 2022) |
28 | Eindhoven University of Technology | Netherlands | 3D printing | http://dx.doi.org/10.1080/17452759.2016.1209867 (accessed on 15 November 2022) |
29 | Allen Engineering | USA | Placing; finishing; polishing; paving | https://www.alleneng.com/ (accessed on 15 November 2022) |
30 | DJI | China | Drone-based surveillance | https://www.dji.com/ (accessed on 15 November 2022) |
31 | Bright Dream Robotics | China | Onsite construction | https://www.bzlrobot.com/ (accessed on 15 November 2022) |
32 | Boston Dynamics | USA | Construction monitoring | https://www.bostondynamics.com/solutions/construction (accessed on 15 November 2022) |
32 | Georgia Institute of Technology | USA | Construction surveillance | https://doi.org/10.1016/j.autcon.2019.102918 (accessed on 15 November 2022) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Wang, Q.; Fang, X.; Liang, W.; Cao, Y.; Zhao, C.; Li, L.; Liu, C.; Wang, K. Application and Development of Autonomous Robots in Concrete Construction: Challenges and Opportunities. Drones 2022, 6, 424. https://doi.org/10.3390/drones6120424
Zhao S, Wang Q, Fang X, Liang W, Cao Y, Zhao C, Li L, Liu C, Wang K. Application and Development of Autonomous Robots in Concrete Construction: Challenges and Opportunities. Drones. 2022; 6(12):424. https://doi.org/10.3390/drones6120424
Chicago/Turabian StyleZhao, Shun, Qiang Wang, Xinjun Fang, Wei Liang, Yu Cao, Changyi Zhao, Lu Li, Chunbao Liu, and Kunyang Wang. 2022. "Application and Development of Autonomous Robots in Concrete Construction: Challenges and Opportunities" Drones 6, no. 12: 424. https://doi.org/10.3390/drones6120424
APA StyleZhao, S., Wang, Q., Fang, X., Liang, W., Cao, Y., Zhao, C., Li, L., Liu, C., & Wang, K. (2022). Application and Development of Autonomous Robots in Concrete Construction: Challenges and Opportunities. Drones, 6(12), 424. https://doi.org/10.3390/drones6120424