Robust Hierarchical Formation Control of Unmanned Aerial Vehicles via Neural-Based Observers
Abstract
:1. Introduction
- 1.
- Inspired by the work in [36], a hierarchical formation control scheme is employed in this paper. To make the reference provided by the high-level systems feasible for low-level UAVs, a saturated high-level formation controller is proposed to reduce the frequency of aggressive motion.
- 2.
- To improve the error converging speed of the observer structure in [34], the sliding mode technique is integrated with an artificial NN to construct an adaptive observer to estimate the unknown nonlinearities in UAV dynamics, and a fully error-related update law is employed.
- 3.
- To attenuate the chattering phenomenon in the control input [32], a saturated and smoothed differentiator is proposed along with an observation introduction function to reduce the oscillations caused by the differentiating process and the neural-based observer.
2. Preliminaries
2.1. Dynamic Model of Uavs
2.2. Graph Theory
2.3. Artificial Nn Approximation
3. Main Results
3.1. High-Level Formation Controller Design
3.2. Neural-Based Observer Design
3.3. Low-Level Formation Controller Design
- 1.
- 2.
- Before is settled within a neighbourhood around 0, the output of the NN is usually filled with oscillations [35].
Algorithm 1: Saturated and smoothed differentiator . |
4. Simulation Results and Discussion
- 1.
- 2.
- The smoothed controller (TSC) where the observation introduction function Equation (40) is employed with and , and the attitude reference derivatives are obtained as
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olfati-Saber, R.; Murray, R.M. Consensus Problems in Networks of Agents with Switching Topology and Time-Delays. IEEE Trans. Autom. Control. 2004, 49, 1520–1533. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Shi, P.; Lim, C.C. Event-triggered sliding mode scaled consensus control for multi-agent systems. J. Frankl. Inst. 2022, 359, 981–998. [Google Scholar] [CrossRef]
- Fei, Y.; Shi, P.; Lim, C.C. Neural network adaptive dynamic sliding mode formation control of multi-agent systems. Int. J. Syst. Sci. 2020, 51, 2025–2040. [Google Scholar] [CrossRef]
- Shi, P.; Yan, B. A Survey on Intelligent Control for Multiagent Systems. IEEE Trans. Syst. Man, Cybern. Syst. 2020, 51, 161–175. [Google Scholar] [CrossRef]
- Xiong, S.; Hou, Z. Data-Driven Formation Control for Unknown MIMO Nonlinear Discrete-Time Multi-Agent Systems with Sensor Fault. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Shi, P.; Lim, C.C. Event-triggered adaptive leaderless consensus control for nonlinear multi-agent systems with unknown backlash-like hysteresis. Int. J. Robust Nonlinear Control. 2021, 31, 7409–7424. [Google Scholar] [CrossRef]
- Liang, X.; Qu, X.; Wang, N.; Li, Y.; Zhang, R. Swarm control with collision avoidance for multiple underactuated surface vehicles. Ocean. Eng. 2019, 191, 106516. [Google Scholar] [CrossRef]
- Divband Soorati, M.; Clark, J.; Ghofrani, J.; Tarapore, D.; Ramchurn, S.D. Designing a User-Centered Interaction Interface for Human–Swarm Teaming. Drones 2021, 5, 131. [Google Scholar] [CrossRef]
- Loizou, S.; Lui, D.G.; Petrillo, A.; Santini, S. Connectivity Preserving Formation Stabilization in an obstacle-cluttered environment in the presence of time-varying communication delays. IEEE Trans. Autom. Control. 2021. [Google Scholar] [CrossRef]
- Fahham, H.; Zaraki, A.; Tucker, G.; Spong, M.W. Time-Optimal Velocity Tracking Control for Consensus Formation of Multiple Nonholonomic Mobile Robots. Sensors 2021, 21, 7997. [Google Scholar] [CrossRef]
- Martinez, J.B.; Becerra, H.M.; Gomez-Gutierrez, D. Formation Tracking Control and Obstacle Avoidance of Unicycle-Type Robots Guaranteeing Continuous Velocities. Sensors 2021, 21, 4374. [Google Scholar] [CrossRef]
- Samadi Gharajeh, M.; Jond, H.B. Speed Control for Leader-Follower Robot Formation Using Fuzzy System and Supervised Machine Learning. Sensors 2021, 21, 3433. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Cheng, H.H. A Review of the Applications of Agent Technology in Traffic and Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2010, 11, 485–497. [Google Scholar] [CrossRef]
- Wang, C.; Tnunay, H.; Zuo, Z.; Lennox, B.; Ding, Z. Fixed-Time Formation Control of Multirobot Systems: Design and Experiments. IEEE Trans. Ind. Electron. 2018, 66, 6292–6301. [Google Scholar] [CrossRef] [Green Version]
- Kendoul, F.; Yu, Z.; Nonami, K. Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles. J. Field Robot. 2010, 27, 311–334. [Google Scholar] [CrossRef]
- Dong, X.; Zhou, Y.; Ren, Z.; Zhong, Y. Time-Varying Formation Tracking for Second-Order Multi-Agent Systems Subjected to Switching Topologies with Application to Quadrotor Formation Flying. IEEE Trans. Ind. Electron. 2016, 64, 5014–5024. [Google Scholar] [CrossRef]
- Ali, Z.A.; Han, Z.; Masood, R.J. Collective Motion and Self-Organization of a Swarm of UAVs: A Cluster-Based Architecture. Sensors 2021, 21, 3820. [Google Scholar] [CrossRef]
- Mehmood, Y.; Aslam, J.; Ullah, N.; Chowdhury, M.; Techato, K.; Alzaed, A.N. Adaptive Robust Trajectory Tracking Control of Multiple Quad-Rotor UAVs with Parametric Uncertainties and Disturbances. Sensors 2021, 21, 2401. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Symagulov, A.; Kuchin, Y.; Zaitseva, E.; Bekbotayeva, A.; Yakunin, K.; Assanov, I.; Levashenko, V.; Popova, Y.; Akzhalova, A.; et al. Review of Some Applications of Unmanned Aerial Vehicles Technology in the Resource-Rich Country. Appl. Sci. 2021, 11, 10171. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, P.; Hu, X.; Wang, Z. Sliding Mode Prediction Fault-Tolerant Control of a Quad-Rotor System with Multi-Delays Based on ICOA. Int. J. Innov. Comput. Inf. Control. 2021, 17, 49–66. [Google Scholar]
- Dong, X.; Hua, Y.; Zhou, Y.; Ren, Z.; Zhong, Y. Theory and Experiment on Formation-Containment Control of Multiple Multirotor Unmanned Aerial Vehicle Systems. IEEE Trans. Autom. Sci. Eng. 2018, 16, 229–240. [Google Scholar] [CrossRef]
- Zhao, B.; Xian, B.; Zhang, Y.; Zhang, X. Nonlinear Robust Adaptive Tracking Control of A Quadrotor UAV via Immersion and Invariance Methodology. IEEE Trans. Ind. Electron. 2015, 62, 2891–2902. [Google Scholar] [CrossRef]
- Du, H.; Zhu, W.; Wen, G.; Wu, D. Finite-time formation control for a group of quadrotor aircraft. Aerosp. Sci. Technol. 2017, 69, 609–616. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, K.; Jiang, B.; Cheng, W.; Ding, Y. Distributed fault-tolerant time-varying formation control of heterogeneous multi-agent systems. Int. J. Robust Nonlinear Control. 2021. [Google Scholar] [CrossRef]
- Tang, S.; Wüest, V.; Kumar, V. Aggressive Flight with Suspended Payloads Using Vision-Based Control. IEEE Robot. Autom. Lett. 2018, 3, 1152–1159. [Google Scholar] [CrossRef]
- Lu, N.; Sun, X.; Zheng, X.; Shen, Q. Command Filtered Adaptive Fuzzy Backstepping Fault Tolerant Control Against Actuator Fault. Icic Express Lett. 2021, 15, 357–365. [Google Scholar]
- Yu, D.; Dong, L.; Yan, H. Adaptive sliding mode control of multi-agent relay tracking systems with disturbances. J. Control. Decis. 2021, 8, 165–174. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Y.; Jiang, B.; Su, C.Y.; Fu, J.; Jin, Y.; Chai, T. Fractional order PID-based adaptive fault-tolerant cooperative control of networked unmanned aerial vehicles against actuator faults and wind effects with hardware-in-the-loop experimental validation. Control. Eng. Pract. 2021, 114, 104861. [Google Scholar] [CrossRef]
- Casavola, A.; Famularo, D.; Gagliardi, G. A linear parameter varying fault detection and isolation method for internal combustion spark ignition engines. Int. J. Robust Nonlinear Control. 2014, 24, 2018–2034. [Google Scholar] [CrossRef]
- Behzad, H.; Casavola, A.; Tedesco, F.; Sadrnia, M.A.; Gagliardi, G. A Fault-Tolerant Sensor Reconciliation Scheme based on Self-Tuning LPV Observers. ICINCO 2018, 1, 121–128. [Google Scholar]
- Gagliardi, G.; Tedesco, F.; Casavola, A. H∞ calibratable LPV control strategies for torque control in automotive turbocharged engines. Int. J. Control. 2021. [Google Scholar] [CrossRef]
- Dou, L.; Su, X.; Zhao, X.; Zong, Q.; He, L. Robust tracking control of quadrotor via on-policy adaptive dynamic programming. Int. J. Robust Nonlinear Control. 2021, 31, 2509–2525. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, M.; Wu, B. Observer-Based Controller Design for Networked Control Systems with Induced Delays and Data Packet Dropouts. ICIC Express Lett. Part Appl. 2021, 12, 243–254. [Google Scholar]
- Liu, D.; Huang, Y.; Wang, D.; Wei, Q. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming. Int. J. Control. 2013, 86, 1554–1566. [Google Scholar] [CrossRef]
- Fei, Y.; Shi, P.; Lim, C.C. Robust and Collision-Free Formation Control of Multiagent Systems with Limited Information. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef]
- Sharma, R.S.; Mondal, A.; Behera, L. Tracking Control of Mobile Robots in Formation in the Presence of Disturbances. IEEE Trans. Ind. Inform. 2020, 17, 110–123. [Google Scholar] [CrossRef]
- Ge, S.S.; Hang, C.C.; Lee, T.H.; Zhang, T. Stable Adaptive Neural Network Control; Springer Science & Business Media: New York, NY, USA, 2013; Volume 13. [Google Scholar]
- Lewis, F.L.; Zhang, H.; Hengster-Movric, K.; Das, A. Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches; Springer Science & Business Media: London, UK, 2013. [Google Scholar]
- Li, X.; Shi, P.; Wang, Y.; Wang, S. Cooperative Tracking Control of Heterogeneous Mixed-Order Multiagent Systems With Higher-Order Nonlinear Dynamics. IEEE Trans. Cybern. 2020. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lewis, F.L. Neural Network Output Feedback Control of Robot Manipulators. IEEE Trans. Robot. Autom. 1999, 15, 301–309. [Google Scholar] [CrossRef]
- Fei, Y.; Shi, P.; Lim, C.C. Robust Formation Control for Multi-Agent Systems: A Reference Correction Based Approach. IEEE Trans. Circuits Syst. Regul. Pap. 2021, 68, 2616–2625. [Google Scholar] [CrossRef]
Term(s) | Definition |
---|---|
, , , , , | Aerodynamic drag coefficients |
, , , , , | External disturbances |
, , | Moments of inertia around the axis |
The mass of the UAV | |
g | The gravity constant |
The drag force coefficient |
UAV Number | (kg) | (m) | |||||
---|---|---|---|---|---|---|---|
1 | |||||||
2 | |||||||
3 | |||||||
4 | |||||||
5 | |||||||
6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fei, Y.; Sun, Y.; Shi, P. Robust Hierarchical Formation Control of Unmanned Aerial Vehicles via Neural-Based Observers. Drones 2022, 6, 40. https://doi.org/10.3390/drones6020040
Fei Y, Sun Y, Shi P. Robust Hierarchical Formation Control of Unmanned Aerial Vehicles via Neural-Based Observers. Drones. 2022; 6(2):40. https://doi.org/10.3390/drones6020040
Chicago/Turabian StyleFei, Yang, Yuan Sun, and Peng Shi. 2022. "Robust Hierarchical Formation Control of Unmanned Aerial Vehicles via Neural-Based Observers" Drones 6, no. 2: 40. https://doi.org/10.3390/drones6020040
APA StyleFei, Y., Sun, Y., & Shi, P. (2022). Robust Hierarchical Formation Control of Unmanned Aerial Vehicles via Neural-Based Observers. Drones, 6(2), 40. https://doi.org/10.3390/drones6020040