Estimation of Maize Foliar Temperature and Stomatal Conductance as Indicators of Water Stress Based on Optical and Thermal Imagery Acquired Using an Unmanned Aerial Vehicle (UAV) Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Maize Growth Stages
2.3. Field Data Collection, Sampling, and Survey
2.4. UAV: DJI Matrice 300 and MicaSense Altum
2.5. Image Acquisition and Processing
2.6. Statistical Analysis
Vegetation Index | Abbreviation | Equation | Reference |
---|---|---|---|
Direct water-related indices | |||
Normalised difference water index | NDWI | Yang and Du [59], Gao [64] | |
Indirect water-related indices | |||
Normalised difference vegetation index | NDVI | Panigrahi and Das [58] | |
Transformed normalised difference vegetation index | TDVI | Castellanos-Quiroz, Ramírez-Daza [65] | |
Normalised difference red edge index | NDRE | Song, Birch [66] | |
Normalised green–red difference index | NGRDI | Song, Birch [66] | |
Green chlorophyll index | CIgreen | Zhang and Zhou [13] | |
Red-edge chlorophyll index | CIrededge | Zhang and Zhou [13] | |
Green NDVI | GNDVI | Song, Birch [66] | |
Canopy chlorophyll content index | CCCI | Fitzgerald, Rodriguez [67] | |
Chlorophyll vegetation index | CVI | Vincini and Frazzi [68] | |
Enhanced vegetation index | EVI | Wiratmoko, Prasetyo [69] | |
Soil adjusted vegetation index | SAVI | Sishodia, Ray [70] | |
Optimised soil-adjusted vegetation index | OSAVI | Sishodia, Ray [70] |
2.7. Accuracy Assessment
3. Results
3.1. Descriptive Analysis of UAV-Derived Data and SI-111 IRR Maize Temperature Data
3.1.1. Maize Temperature Data over Phenotyping
3.1.2. Evaluation of UAV Thermal Imagery against In-Field SI-111 IRR Temperature Sensors
3.2. Descriptive Statistics of In Situ Maize Temperature and Stomatal Conductance Measurements
3.3. UAV-Derived Data: Estimation of Maize Temperature and Stomatal Conductance
3.3.1. Optimised Regression Models of Maize Foliar Temperature and Stomatal Conductance over the Phenological Stages
3.3.2. Mapping the Spatial Distribution of Maize Temperature and Stomatal Conductance over the Various Phenological Stages
4. Discussion
4.1. Prediction of Maize Water Stress Using Foliar Temperature and Stomatal Conductance
4.2. Implications of the Study
4.3. Limitations and Recommendations for Future Research
5. Conclusions
- The UAV-derived optical data and thermal infrared waveband optimally estimated maize temperature during the mid-vegetative stage to an RMSE = 0.59 °C and R2 = 0.81 (RRMSE = 2.9%) based on the thermal infrared, followed by the NIR, NGRBI, EVI and NDVI, in order of importance;
- The optical and thermal infrared data optimally predicted stomatal conductance from the early reproductive stage to an RMSE = 25.9 mmol m−2 s−1 and R2 = 0.85 (RRMSE = 11.5%) based on the red-edge band, followed by the NIR, green, OSAVI and blue band, in order of importance.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lickley, M.; Solomon, S. Drivers, timing and some impacts of global aridity change. Environ. Res. Lett. 2018, 13, 104010. [Google Scholar] [CrossRef]
- Nhamo, L.; Matchaya, G.; Mabhaudhi, T.; Nhlengethwa, S.; Nhemachena, C.; Mpandeli, S. Cereal production trends under climate change: Impacts and adaptation strategies in southern Africa. Agriculture 2019, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Adisa, O.M.; Botai, C.M.; Botai, J.O.; Hassen, A.; Darkey, D.; Tesfamariam, E.; Adisa, A.F.; Adeola, A.M.; Ncongwane, K.P. Analysis of agro-climatic parameters and their influence on maize production in South Africa. Theor. Appl. Climatol. 2018, 134, 991–1004. [Google Scholar] [CrossRef]
- Rockstrom, J. Water resources management in smallholder farms in Eastern and Southern Africa: An overview. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 275–283. [Google Scholar] [CrossRef]
- Ubisi, N.R.; Mafongoya, P.L.; Kolanisi, U.; Jiri, O. Smallholder farmer’s perceived effects of climate change on crop production and household livelihoods in rural Limpopo province, South Africa. Chang. Adapt. Socio-Ecol. Syst. 2017, 3, 27–38. [Google Scholar] [CrossRef]
- Andersson, J.; Zehnder, A.J.; Jewitt, G.P.; Yang, H. Water availability, demand and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa. Hydrol. Earth Syst. Sci. 2009, 13, 2329–2347. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.-D.; Xue, J.-Q.; Guo, D.-W. Efficacy of planting date adjustment as a cultivation strategy to cope with drought stress and increase rainfed maize yield and water-use efficiency. Agric. Water Manag. 2017, 179, 227–235. [Google Scholar] [CrossRef]
- Walker, N.; Schulze, R. An assessment of sustainable maize production under different management and climate scenarios for smallholder agro-ecosystems in KwaZulu-Natal, South Africa. Phys. Chem. Earth Parts A/B/C 2006, 31, 995–1002. [Google Scholar] [CrossRef]
- Taghvaeian, S.; Chávez, J.L.; Bausch, W.C.; DeJonge, K.C.; Trout, T.J. Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize. Irrig. Sci. 2014, 32, 53–65. [Google Scholar] [CrossRef]
- Du Plessis, J. Maize Production; Department of Agriculture Pretoria: Pretoria, South Africa, 2003.
- Haarhoff, S.J.; Kotzé, T.N.; Swanepoel, P.A. A prospectus for sustainability of rainfed maize production systems in South Africa. Crop Sci. 2020, 60, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Carroll, D.A.; Hansen, N.C.; Hopkins, B.G.; DeJonge, K.C. Leaf temperature of maize and Crop Water Stress Index with variable irrigation and nitrogen supply. Irrig. Sci. 2017, 35, 549–560. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G. Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecol. 2019, 19, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saseendran, S.; Trout, T.; Ahuja, L.; Ma, L.; McMaster, G.; Nielsen, D.; Andales, A.; Chávez, J.; Ham, J. Quantifying crop water stress factors from soil water measurements in a limited irrigation experiment. Agric. Syst. 2015, 137, 191–205. [Google Scholar] [CrossRef]
- Jackson, R.D.; Idso, S.; Reginato, R.; Pinter, P., Jr. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Yun, S.K.; Kim, S.J.; Nam, E.Y.; Kwon, J.H.; Do, Y.S.; Song, S.-Y.; Kim, M.; Choi, Y.; Kim, G.; Shin, H. Evaluation of water stress using canopy temperature and crop water stress index (CWSI) in peach trees. Prot. Hortic. Plant Fact. 2020, 29, 20–27. [Google Scholar] [CrossRef]
- González-Dugo, M.; Moran, M.; Mateos, L.; Bryant, R. Canopy temperature variability as an indicator of crop water stress severity. Irrig. Sci. 2006, 24, 233. [Google Scholar] [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and future perspectives of multi-/Hyperspectral thermal infrared remote sensing for crop water-stress detection: A review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Dickinson, R.E.; Wang, Y.-P. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Clim. 2004, 17, 2281–2299. [Google Scholar] [CrossRef]
- Jamshidi, S.; Zand-Parsa, S.; Niyogi, D. Assessing crop water stress index of citrus using in-situ measurements, Landsat, and Sentinel-2 Data. Int. J. Remote Sens. 2021, 42, 1893–1916. [Google Scholar] [CrossRef]
- Veysi, S.; Naseri, A.A.; Hamzeh, S.; Bartholomeus, H. A satellite based crop water stress index for irrigation scheduling in sugarcane fields. Agric. Water Manag. 2017, 189, 70–86. [Google Scholar] [CrossRef]
- Sepulcre-Cantó, G.; Zarco-Tejada, P.; Sobrino, J.; Jiménez-Muñoz, J.; Villalobos, F. Spatial variability of crop water stress in an olive grove with high-spatial thermal remote sensing imagery. Proc. Precis. Agric. 2005, 5, 267–272. [Google Scholar]
- Zhang, L.; Niu, Y.; Zhang, H.; Han, W.; Li, G.; Tang, J.; Peng, X. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Front. Plant Sci. 2019, 10, 1270. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping Maize Water Stress Based on UAV Multispectral Remote Sensing. Remote Sens. 2019, 11, 605. [Google Scholar] [CrossRef] [Green Version]
- El-Hendawy, S.E.; Al-Suhaibani, N.A.; Elsayed, S.; Hassan, W.M.; Dewir, Y.H.; Refay, Y.; Abdella, K.A. Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain yield of spring wheat exposed to different irrigation rates. Agric. Water Manag. 2019, 217, 356–373. [Google Scholar] [CrossRef]
- Pasqualotto, N.; Delegido, J.; Van Wittenberghe, S.; Verrelst, J.; Rivera, J.P.; Moreno, J. Retrieval of canopy water content of different crop types with two new hyperspectral indices: Water Absorption Area Index and Depth Water Index. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 69–78. [Google Scholar] [CrossRef]
- Prakash, A. Thermal remote sensing: Concepts, issues and applications. Int. Arch. Photogramm. Remote Sens. 2000, 33, 239–243. [Google Scholar]
- Brewer, K.; Clulow, A.; Sibanda, M.; Gokool, S.; Naiken, V.; Mabhaudhi, T. Predicting the Chlorophyll Content of Maize over Phenotyping as a Proxy for Crop Health in Smallholder Farming Systems. Remote Sens. 2022, 14, 518. [Google Scholar] [CrossRef]
- Chang, A.; Jung, J.; Yeom, J.; Maeda, M.M.; Landivar, J.A.; Enciso, J.M.; Avila, C.A.; Anciso, J.R. Unmanned Aircraft System-(UAS-) Based High-Throughput Phenotyping (HTP) for Tomato Yield Estimation. J. Sens. 2021, 2021, 8875606. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Cezar, E.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; Farias, J.R.B. UAV-based thermal imaging in the assessment of water status of soybean plants. Int. J. Remote Sens. 2020, 41, 3243–3265. [Google Scholar] [CrossRef]
- Hoffmann, H.; Jensen, R.; Thomsen, A.; Nieto, H.; Rasmussen, J.; Friborg, T. Crop water stress maps for an entire growing season from visible and thermal UAV imagery. Biogeosciences 2016, 13, 6545–6563. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Chapman, S.C.; Zheng, B. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops. Funct. Plant Biol. 2021, 48, 766. [Google Scholar] [CrossRef] [PubMed]
- Messina, G.; Modica, G. Applications of UAV thermal imagery in precision agriculture: State of the art and future research outlook. Remote Sens. 2020, 12, 1491. [Google Scholar] [CrossRef]
- Xie, C.; Yang, C. A review on plant high-throughput phenotyping traits using UAV-based sensors. Comput. Electron. Agric. 2020, 178, 105731. [Google Scholar] [CrossRef]
- Romano, G.; Zia, S.; Spreer, W.; Sanchez, C.; Cairns, J.; Araus, J.L.; Müller, J. Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Comput. Electron. Agric. 2011, 79, 67–74. [Google Scholar] [CrossRef]
- Nhamo, L.; Magidi, J.; Nyamugama, A.; Clulow, A.D.; Sibanda, M.; Chimonyo, V.G.; Mabhaudhi, T. Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles. Agriculture 2020, 10, 256. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef]
- Park, S.; Ryu, D.; Fuentes, S.; Chung, H.; Hernández-Montes, E.; O’Connell, M. Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (UAV). Remote Sens. 2017, 9, 828. [Google Scholar] [CrossRef] [Green Version]
- Cucho-Padin, G.; Loayza, H.; Palacios, S.; Balcazar, M.; Carbajal, M.; Quiroz, R. Development of low-cost remote sensing tools and methods for supporting smallholder agriculture. Appl. Geomat. 2020, 12, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahman, E.M.; Ahmed, F.B.; Ismail, R. Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data. Int. J. Remote Sens. 2013, 34, 712–728. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, G.; Sun, H.; Wang, H.; Chen, S.; Senthilnath, J.; Wang, J.; Fu, Y. Scaling effects on chlorophyll content estimations with RGB camera mounted on a UAV platform using machine-learning methods. Sensors 2020, 20, 5130. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassanijalilian, O.; Igathinathane, C.; Doetkott, C.; Bajwa, S.; Nowatzki, J.; Esmaeili, S.A.H. Chlorophyll estimation in soybean leaves infield with smartphone digital imaging and machine learning. Comput. Electron. Agric. 2020, 174, 105433. [Google Scholar] [CrossRef]
- Ramos, A.P.M.; Osco, L.P.; Furuya, D.E.G.; Gonçalves, W.N.; Santana, D.C.; Teodoro, L.P.R.; da Silva Junior, C.A.; Capristo-Silva, G.F.; Li, J.; Baio, F.H.R. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Comput. Electron. Agric. 2020, 178, 105791. [Google Scholar] [CrossRef]
- Yao, D.; Yang, J.; Zhan, X. An improved random forest algorithm for class-imbalanced data classification and its application in PAD risk factors analysis. Open Electr. Electron. Eng. J. 2013, 7, 62–70. [Google Scholar] [CrossRef]
- Polikar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6, 21–45. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Urban heat island explored by co-relationship between land surface temperature vs multiple vegetation indices. Spat. Inf. Res. 2016, 24, 515–529. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.; Huang, T.; Wang, J.; Lin, L.; Wang, L.; Yang, M. Estimation of leaf nitrogen content in wheat using new hyperspectral indices and a random forest regression algorithm. Remote Sens. 2018, 10, 1940. [Google Scholar] [CrossRef] [Green Version]
- Noi, P.T.; Degener, J.; Kappas, M. Comparison of multiple linear regression, cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data. Remote Sens. 2017, 9, 398. [Google Scholar] [CrossRef] [Green Version]
- Cakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Zhao, X.; Tong, C.; Pang, X.; Wang, Z.; Guo, Y.; Du, F.; Wu, R. Functional mapping of ontogeny in flowering plants. Brief. Bioinform. 2012, 13, 317–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aragon, B.; Johansen, K.; Parkes, S.; Malbeteau, Y.; Al-Mashharawi, S.; Al-Amoudi, T.; Andrade, C.F.; Turner, D.; Lucieer, A.; McCabe, M.F. A calibration procedure for field and UAV-based uncooled thermal infrared instruments. Sensors 2020, 20, 3316. [Google Scholar] [CrossRef]
- Costa, C.; Frigon, D.; Dutilleul, P.; Dwyer, L.M.; Pillar, V.D.; Stewart, D.W.; Smith, D.L. Sample size determination for chlorophyll meter readings on maize hybrids with a broad range of canopy types. J. Plant Nutr. 2003, 26, 1117–1130. [Google Scholar] [CrossRef]
- Handiganoor, M.G.; Patil, S.; Vasudevan, S. Effect of Seed Coating Polymer and Micronutrients on Stomatal Conductance and Resistance at Different Growth Stages of Pigeonpea. Adv. Res. 2018, 17, 1–8. [Google Scholar] [CrossRef]
- Hutton, J.; Lipa, G.; Baustian, D.; Sulik, J.; Bruce, R. High Accuracy Direct Georeferencing of the Altum Multi-Spectral Uav Camera and its Application to High Throughput Plant Phenotyping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 451–456. [Google Scholar] [CrossRef]
- Panigrahi, N.; Das, B. Canopy spectral reflectance as a predictor of soil water potential in rice. Water Resour. Res. 2018, 54, 2544–2560. [Google Scholar] [CrossRef]
- Yang, J.; Du, X. An enhanced water index in extracting water bodies from Landsat TM imagery. Ann. GIS 2017, 23, 141–148. [Google Scholar] [CrossRef]
- Dye, M.; Mutanga, O.; Ismail, R. Examining the utility of random forest and AISA Eagle hyperspectral image data to predict Pinus patula age in KwaZulu-Natal, South Africa. Geocarto Int. 2011, 26, 275–289. [Google Scholar] [CrossRef]
- Luan, J.; Zhang, C.; Xu, B.; Xue, Y.; Ren, Y. The predictive performances of random forest models with limited sample size and different species traits. Fish. Res. 2020, 227, 105534. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Rugege, D.; Ismail, R. Discriminating the papyrus vegetation (Cyperus papyrus L.) and its co-existent species using random forest and hyperspectral data resampled to HYMAP. Int. J. Remote Sens. 2012, 33, 552–569. [Google Scholar] [CrossRef]
- Sibanda, M.; Onisimo, M.; Dube, T.; Mabhaudhi, T. Quantitative assessment of grassland foliar moisture parameters as an inference on rangeland condition in the mesic rangelands of southern Africa. Int. J. Remote Sens. 2021, 42, 1474–1491. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Castellanos-Quiroz, H.O.A.; Ramírez-Daza, H.M.; Ivanova, Y. Detection of open-pit mining zones by implementing spectral indices and image fusion techniques. Dyna 2017, 84, 42–49. [Google Scholar] [CrossRef]
- Song, Y.; Birch, C.; Qu, S.; Doherty, A.; Hanan, J. Analysis and modelling of the effects of water stress on maize growth and yield in dryland conditions. Plant Prod. Sci. 2010, 13, 199–208. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; O’Leary, G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI). Field Crops Res. 2010, 116, 318–324. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E. Comparing narrow and broad-band vegetation indices to estimate leaf chlorophyll content in planophile crop canopies. Precis. Agric. 2011, 12, 334–344. [Google Scholar] [CrossRef]
- Wiratmoko, D.; Prasetyo, A.E.; Jatmiko, R.H.; Yusuf, M.A.; Rahutomo, S. Identification of Ganoderma boninense infection levels on oil palm using vegetation index. Int. J. Oil Palm 2018, 1, 110–120. [Google Scholar]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Mahdianpari, M.; Mohammadimanesh, F.; Behrens, T.; Toomanian, N.; Scholten, T.; Schmidt, K. Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran. Geoderma 2020, 376, 114552. [Google Scholar] [CrossRef]
- Mangus, D.L.; Sharda, A.; Zhang, N. Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse. Comput. Electron. Agric. 2016, 121, 149–159. [Google Scholar] [CrossRef]
- Brenner, C.; Thiem, C.E.; Wizemann, H.-D.; Bernhardt, M.; Schulz, K. Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system. Int. J. Remote Sens. 2017, 38, 3003–3026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, B.; Sahoo, R.N.; Pargal, S.; Krishna, G.; Verma, R.; Viswanathan, C.; Sehgal, V.K.; Gupta, V.K. Evaluation of different water absorption bands, indices and multivariate models for water-deficit stress monitoring in rice using visible-near infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 247, 119104. [Google Scholar] [CrossRef] [PubMed]
- Kullberg, E.G.; DeJonge, K.C.; Chávez, J.L. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agric. Water Manag. 2017, 179, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Xu, A.; Zhang, S.; Wu, L. Retrieval of leaf water content for maize seedlings in visible near infrared and thermal infrared spectra. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6930–6933. [Google Scholar]
- Göbel, L.; Coners, H.; Hertel, D.; Willinghöfer, S.; Leuschner, C. The role of low soil temperature for photosynthesis and stomatal conductance of three graminoids from different elevations. Front. Plant Sci. 2019, 10, 330. [Google Scholar] [CrossRef] [Green Version]
- Nejad, T.S. Effect of drought stress on stomata resistance changes in corn. J. Am. Sci. 2011, 7, 27–31. [Google Scholar]
- Van der Vyver, C.; Peters, S. How do plants deal with dry days? Front. Young Minds 2017, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Leinonen, I.; Grant, O.; Tagliavia, C.; Chaves, M.; Jones, H. Estimating stomatal conductance with thermal imagery. Plant Cell Environ. 2006, 29, 1508–1518. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Save, R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Ustin, S.L.; Jacquemoud, S. How the optical properties of leaves modify the absorption and scattering of energy and enhance leaf functionality. In Remote Sensing of Plant Biodiversity; Springer: Cham, Switzerland, 2020; pp. 349–384. [Google Scholar]
- Bonada, M.; Sadras, V.; Moran, M.; Fuentes, S. Elevated temperature and water stress accelerate mesocarp cell death and shrivelling, and decouple sensory traits in Shiraz berries. Irrig. Sci. 2013, 31, 1317–1331. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bano, S.; Aslam, M.; Saleem, M.; Basra, S.; Aziz, K. Evaluation of maize accessions under low temperature stress at early growth stages. J. Anim. Plant Sci 2015, 25, 392–400. [Google Scholar]
- Ciganda, V.S.; Gitelson, A.A.; Schepers, J. How deep does a remote sensor sense? Expression of chlorophyll content in a maize canopy. Remote Sens. Environ. 2012, 126, 240–247. [Google Scholar] [CrossRef]
- Yordanov, I.; Tsonev, T.; Goltsev, V.; Kruleva, L.; Velikova, V. Interactive effect of water deficit and high temperature on photosynthesis of sunflower and maize plants. 1. Changes in parameters of chlorophyll fluorescence induction kinetics and fluorescence quenching. Photosynthetica 1997, 33, 391–402. [Google Scholar]
- Ballester, C.; Brinkhoff, J.; Quayle, W.C.; Hornbuckle, J. Monitoring the effects of water stress in cotton using the green red vegetation index and red edge ratio. Remote Sens. 2019, 11, 873. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.; Zhao, T.; Wang, D.; Chen, Y. Estimating evapotranspiration with UAVs in agriculture: A review. In Proceedings of the 2019 ASABE Annual International Meeting, Boston, MA, USA, 7–10 July 2019; p. 1. [Google Scholar]
- Vitrack-Tamam, S.; Holtzman, L.; Dagan, R.; Levi, S.; Tadmor, Y.; Azizi, T.; Rabinovitz, O.; Naor, A.; Liran, O. Random Forest Algorithm Improves Detection of Physiological Activity Embedded within Reflectance Spectra Using Stomatal Conductance as a Test Case. Remote Sens. 2020, 12, 2213. [Google Scholar] [CrossRef]
- Dobrowski, S.; Pushnik, J.; Zarco-Tejada, P.J.; Ustin, S.L. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sens. Environ. 2005, 97, 403–414. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Pushnik, J.; Dobrowski, S.; Ustin, S. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens. Environ. 2003, 84, 283–294. [Google Scholar] [CrossRef]
- Carter, G.A. Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sens. Environ. 1998, 63, 61–72. [Google Scholar] [CrossRef]
- Waring, R.; Landsberg, J. Generalizing plant–water relations to landscapes. J. Plant Ecol. 2011, 4, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Kang, S.; Zhang, J. Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat. Agric. Water Manag. 2004, 67, 221–233. [Google Scholar] [CrossRef]
Days after Emergence | Growth Stage | Description | Pictures | |
---|---|---|---|---|
0 | VE | Vegetative Growth Stages | Germination and emergence. Planting depth 5–8 cm. | |
7 | V2 | |||
21 | V5 | Plant population established. Growth point 20–25 mm below surface. Leaf sheath and blades. Tassel initiation. | ||
32 | V8 | Ear initiation and early cob development. | ||
38 | V10 | |||
44 | V12 | Tassel at growth point begins to develop rapidly. Active growth in lateral shoots and cob development from the sixth to eighth node above surface. Brace root development. | ||
49 | V14 | |||
56 | VT | Tasseling stage. Silks are developing. The demand for water and nutrients is high. All leaves present. Pollination 5–10 days. | ||
63 | R1 | Reproductive Growth Stages | ||
70 | R2–R3 | Kernel development. Silking stage. | ||
77 | ||||
84 | ||||
91 | R3–R4 | Grain filling. Nutrients are transported to cob. Sugars converted into starch. | ||
98 | ||||
105 | ||||
112 | R5–R6 | Physiological maturity and drying of kernels. Starch in kernels. End of mass gain. | ||
119 | ||||
160 | R+ | Ready for harvest. Optimal moisture and nutrients. |
Band | Spectral Color | Band Center/Range | Ground Sampling Distance at Flying Height of 120 m |
---|---|---|---|
1 | Blue | 475 nm | 5.2 cm per pixel |
2 | Green | 560 nm | 5.2 cm per pixel |
3 | Red | 668 nm | 5.2 cm per pixel |
4 | Red-edge | 717 nm | 5.2 cm per pixel |
5 | Near-infrared | 842 nm | 5.2 cm per pixel |
6 | Thermal infrared | 8000–14,000 nm | 5.2 cm per pixel |
Parameters | Specifications |
---|---|
Altitude | 100 m |
Ground sampling distance (optical) | 7 cm |
Ground sampling distance (thermal infrared) | 109 cm |
Speed | 16 m/s |
Flight duration | 14 min 36 s |
Composite images | 321 |
Image overlap | 80% |
Maize Foliar Temperature at the Various Growth Stages | Maximum (°C) | Minimum (°C) | |||
---|---|---|---|---|---|
IRR | IRT | IRR | IRT | ||
DOY 61 | V5–V10 | 34 | 32.7 | 17 | 21.5 |
DOY 77 | V12 | 33 | 23.4 | 20.5 | 15.5 |
DOY 90 | V14–VT | 35 | 39.1 | 17.1 | 23.1 |
DOY 102 | R1–R3 | 34 | 33.7 | 18.9 | 21.4 |
DOY 118 | R3–R4 | 33 | 34.3 | 16 | 19.3 |
DOY 134 | R5–R6 | 30 | 32.3 | 20.4 | 24.8 |
Mean | 33.2 | 32.6 | 18.3 | 20.9 | |
Median | 33.5 | 33.2 | 18 | 21.5 | |
Standard deviation | 1.7 | 5.1 | 1.9 | 3.2 | |
Co-efficient of variation | 5.2 | 15.7 | 10.4 | 15.5 |
Maize Stomatal Conductance at the Various Growth Stages | Minimum (mmol m−2 s−1) | Maximum (mmol m−2 s−1) | Mean (mmol m−2 s−1) | Median (mmol m−2 s−1) | Standard Deviation | |
---|---|---|---|---|---|---|
DOY 61 | V5–V10 | 42 | 245.1 | 121.8 | 112.9 | 49.25 |
DOY 77 | V12 | 86.6 | 556.5 | 248.5 | 238.1 | 113.3 |
DOY 90 | V14–VT | 44.2 | 404.8 | 166.5 | 157.6 | 73.7 |
DOY 102 | R1–R2 | 182.7 | 480.1 | 298.9 | 290.1 | 79.3 |
DOY 118 | R2–R4 | 100.2 | 373.6 | 172.6 | 160.3 | 55.6 |
DOY 134 | R4–R5 | 74.3 | 483.1 | 233.3 | 208.5 | 104.8 |
Average value | 88.3 | 423.9 | 206.9 | 194.6 | 79.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brewer, K.; Clulow, A.; Sibanda, M.; Gokool, S.; Odindi, J.; Mutanga, O.; Naiken, V.; Chimonyo, V.G.P.; Mabhaudhi, T. Estimation of Maize Foliar Temperature and Stomatal Conductance as Indicators of Water Stress Based on Optical and Thermal Imagery Acquired Using an Unmanned Aerial Vehicle (UAV) Platform. Drones 2022, 6, 169. https://doi.org/10.3390/drones6070169
Brewer K, Clulow A, Sibanda M, Gokool S, Odindi J, Mutanga O, Naiken V, Chimonyo VGP, Mabhaudhi T. Estimation of Maize Foliar Temperature and Stomatal Conductance as Indicators of Water Stress Based on Optical and Thermal Imagery Acquired Using an Unmanned Aerial Vehicle (UAV) Platform. Drones. 2022; 6(7):169. https://doi.org/10.3390/drones6070169
Chicago/Turabian StyleBrewer, Kiara, Alistair Clulow, Mbulisi Sibanda, Shaeden Gokool, John Odindi, Onisimo Mutanga, Vivek Naiken, Vimbayi G. P. Chimonyo, and Tafadzwanashe Mabhaudhi. 2022. "Estimation of Maize Foliar Temperature and Stomatal Conductance as Indicators of Water Stress Based on Optical and Thermal Imagery Acquired Using an Unmanned Aerial Vehicle (UAV) Platform" Drones 6, no. 7: 169. https://doi.org/10.3390/drones6070169
APA StyleBrewer, K., Clulow, A., Sibanda, M., Gokool, S., Odindi, J., Mutanga, O., Naiken, V., Chimonyo, V. G. P., & Mabhaudhi, T. (2022). Estimation of Maize Foliar Temperature and Stomatal Conductance as Indicators of Water Stress Based on Optical and Thermal Imagery Acquired Using an Unmanned Aerial Vehicle (UAV) Platform. Drones, 6(7), 169. https://doi.org/10.3390/drones6070169