Mission Planning for Low Altitude Aerial Drones during Water Sampling
Abstract
:1. Introduction
1.1. Flight Planning Applications/Research
1.2. Water Sampling from an Aerial Drone
2. Methodology
2.1. Study Site
2.2. Aerial Drone and Sensors
2.3. Geospatial Data and Pre-Processing
2.4. Visibility of a Distant Object
3. Example Mission
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quirk, B.; Haack, B. Federal government applications of UAS technology. In Applications of Small Unmanned Aircraft Systems; Sharma, J.B., Ed.; CRC Press: New York, NY, USA, 2019; pp. 81–113. [Google Scholar]
- Walter, M. Drones in Urban Stormwater Management: A Review and Future Perspectives. Urban Water J. 2019, 16, 505–518. [Google Scholar] [CrossRef]
- Niglio, F.; Comite, P.; Cannas, A.; Pirri, A.; Tortora, G. Preliminary Clinical Validation of a Drone-Based Delivery System in Urban Scenarios Using a Smart Capsule for Blood. Drones 2022, 6, 195. [Google Scholar] [CrossRef]
- Kim, J.J.; Kim, I.; Hwang, J. A change of perceived innovativeness for contactless food delivery services using drones after the outbreak of COVID-19. Int. J. Hosp. Manag. 2020, 93, 102758. [Google Scholar] [CrossRef]
- Barbieri, L.; Kral, S.T.; Bailey, S.C.C.; Frazier, A.E.; Jacob, J.D.; Reuder, J.; Brus, D.; Chilson, P.B.; Crick, C.; Detweiler, C.; et al. Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign. Sensors 2019, 19, 2179. [Google Scholar] [CrossRef] [PubMed]
- Schuyler, T.J.; Bailey, S.C.C.; Guzman, M.I. Monitoring Tropospheric Gases with Small Unmanned Aerial Systems (sUAS) during the Second CLOUDMAP Flight Campaign. Atmosphere 2019, 10, 434. [Google Scholar] [CrossRef]
- Hodgson, M.E.; Sella-Villa, D. State-level statutes governing unmanned aerial vehicle use in academic research in the United States. Int. J. Remote Sens. 2021, 42, 5366–5395. [Google Scholar] [CrossRef]
- Mulero-Pázmány, M.; Jenni-Eiermann, S.; Strebel, N.; Sattler, T.; Negro, J.J.; Tablado, Z. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 2017, 12, e0178448. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Zhu, M.; Zheng, F. Stochastic Drone Fleet Deployment and Planning Problem Considering Multiple-Type Delivery Service. Sustainability 2019, 11, 3871. [Google Scholar] [CrossRef]
- Chen, Y.; She, J.; Li, X.; Zhang, S.; Tan, J. Accurate and Efficient Calculation of Three-Dimensional Cost Distance. ISPRS Int. J. Geo-Inf. 2020, 9, 353. [Google Scholar] [CrossRef]
- Nägeli, T.; Meier, L.; Domahidi, A.; Alonso-Mora, J.; Hilliges, O. Real-time planning for automated multi-view drone cinematography. ACM Trans. Graph. 2017, 36, 1–10. [Google Scholar] [CrossRef]
- Kurdel, P.; Češkovič, M.; Gecejová, N.; Adamčík, F.; Gamcová, M. Local Control of Unmanned Air Vehicles in the Mountain Area. Drones 2022, 6, 54. [Google Scholar] [CrossRef]
- Le, W.; Xue, Z.; Chen, J.; Zhang, Z. Coverage Path Planning Based on the Optimization Strategy of Multiple Solar Powered Unmanned Aerial Vehicles. Drones 2022, 6, 203. [Google Scholar] [CrossRef]
- Jayaweera, H.M.P.C.; Hanoun, S. Path Planning of Unmanned Aerial Vehicles (UAVs) in Windy Environments. Drones 2022, 6, 101. [Google Scholar] [CrossRef]
- Nedjati, A.; Izbirak, G.; Vizvari, B.; Arkat, J. Complete Coverage Path Planning for a Multi-UAV Response System in Post-Earthquake Assessment. Robotics 2016, 5, 26. [Google Scholar] [CrossRef]
- Cho, S.-W.; Park, J.-H.; Park, H.-J.; Kim, S. Multi-UAV Coverage Path Planning Based on Hexagonal Grid Decomposition in Maritime Search and Rescue. Mathematics 2021, 10, 83. [Google Scholar] [CrossRef]
- Moud, H.I.; Flood, I.; Zhang, X.; Abbasnejad, B.; Rahgozar, P.; McIntyre, M. Qualitative and Quantitative Risk Analysis of Unmanned Aerial Vehicle Flights on Construction Job Sites: A Case Study. Int. J. Adv. Intell. Syst. 2019, 12, 135–146. [Google Scholar] [CrossRef]
- Melita, C.D.; Guastella, D.C.; Cantelli, L.; Di Marco, G.; Minio, I.; Muscato, G. Low-Altitude Terrain-Following Flight Planning for Multirotors. Drones 2020, 4, 26. [Google Scholar] [CrossRef]
- Pascarelli, C.; Marra, M.; Avanzini, G.; Corallo, A. Environment for Planning Unmanned Aerial Vehicles Operations. Aerospace 2019, 6, 51. [Google Scholar] [CrossRef]
- Cummings, M.; Marquez, J.; Roy, N. Human-automated path planning optimization and decision support. Int. J. Human-Computer Stud. 2012, 70, 116–128. [Google Scholar] [CrossRef]
- Stodola, P. Improvement in the model of cooperative aerial reconnaissance used in the tactical decision support system. J. Déf. Model. Simul. Appl. Methodol. Technol. 2017, 14, 483–492. [Google Scholar] [CrossRef]
- Tokekar, P.; vander Hook, J.; Mulla, D.; Isler, V. Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture. IEEE Trans. Robot. 2016, 32, 1498–1511. [Google Scholar] [CrossRef]
- Fikar, C.; Gronalt, M.; Hirsch, P. A decision support system for coordinated disaster relief distribution. Expert Syst. Appl. 2016, 57, 104–116. [Google Scholar] [CrossRef]
- Roesler, C.; Uitz, J.; Claustre, H.; Boss, E.; Xing, X.; Organelli, E.; Briggs, N.; Bricaud, A.; Schmechtig, C.; Poteau, A.; et al. Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnol. Oceanogr. Methods 2017, 15, 572–585. [Google Scholar] [CrossRef]
- Olson, R.J.; Sosik, H. A submersible imaging-in-flow instrument to analyze nano-and microplankton: Imaging FlowCytobot. Limnol. Oceanogr. Methods 2007, 5, 195–203. [Google Scholar] [CrossRef]
- Kalaitzakis, M.; Cain, B.; Vitzilaios, N.; Rekleitis, I.; Moulton, J. A marsupial robotic system for surveying and inspection of freshwater ecosystems. J. Field Robot. 2020, 38, 121–138. [Google Scholar] [CrossRef]
- English, C.; Kitzhaber, Z.; Sanim, K.R.I.; Kalaitzakis, M.; Kosaraju, B.; Pinckney, J.L.; Hodgson, M.E.; Vitzilaios, N.I.; Richardson, T.L.; Myrick, M.L. Chlorophyll Fluorometer for Intelligent Water Sampling by a Small Uncrewed Aircraft system (sUAS). Appl. Spectrosc. 2022; in press. [Google Scholar]
- Page, B.P.; Kumar, A.; Mishra, D.R. A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2018, 66, 69–81. [Google Scholar] [CrossRef]
- Schwarzbach, M.; Laiacker, M.; Mulero-Pazmany, M.; Kondak, K. Remote water sampling using flying robots. In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems, ICUAS 2014—Conference Proceedings, Orlando, FL, USA, 27–30 May 2014; pp. 72–76. [Google Scholar] [CrossRef]
- Ore, J.P.; Elbaum, S.; Burgin, A.; Detweiler, C. Autonomous aerial water sampling. J. Field Robot. 2015, 32, 1095–1113. [Google Scholar] [CrossRef]
- Castendyk, D.; Straight, B.; Voorhis, J.; Somogyi, M.; Jepson, W.; Kucera, B. Using aerial drones to select sample depths in pit lakes. In Proceedings of the 13th International Conference on Mine Closure, Australian Centre for Geomechanics, Perth, Australia, 3–5 September 2019; pp. 1113–1126. [Google Scholar] [CrossRef]
- Prior, E.M.; O’Donnell, F.C.; Brodbeck, C.; Donald, W.N.; Runion, G.B.; Shepherd, S.L. Measuring High Levels of Total Suspended Solids and Turbidity Using Small Unoccupied Aerial Systems (sUAS) Multispectral Imagery. Drones 2020, 4, 54. [Google Scholar] [CrossRef]
- Demario, A.; Lopez, P.; Plewka, E.; Wix, R.; Xia, H.; Zamora, E.; Gessler, D.; Yalin, A.P. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS). Sensors 2017, 17, 306. [Google Scholar] [CrossRef]
- Fitch, K.; Kelleher, C.; Caldwell, S.; Joyce, I. Airborne thermal infrared videography of stream temperature anomalies from a small unoccupied aerial system. Hydrol. Process. 2018, 32, 2616–2619. [Google Scholar] [CrossRef]
- Kim, H.H. New Algae Mapping Technique by the Use of an Airborne Laser Fluorosensor. Appl. Opt. 1973, 12, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- Aruffo, E.; Chiuri, A.; Angelini, F.; Artuso, F.; Cataldi, D.; Colao, F.; Fiorani, L.; Menicucci, I.; Nuvoli, M.; Pistilli, M.; et al. Hyperspectral Fluorescence LIDAR Based on a Liquid Crystal Tunable Filter for Marine Environment Monitoring. Sensors 2020, 20, 410. [Google Scholar] [CrossRef]
- Grishin, M.Y.; Lednev, V.N.; Pershin, S.M.; Bunkin, A.F.; Kobylyanskiy, V.V.; Ermakov, S.A.; A Kapustin, I.; A Molkov, A. Laser remote sensing of an algal bloom in a freshwater reservoir. Laser Phys. 2016, 26, 125601. [Google Scholar] [CrossRef]
- Duan, Z.; Li, Y.; Wang, J.; Zhao, G.; Svanberg, S. Aquatic environment monitoring using a drone-based fluorosensor. Appl. Phys. A 2019, 125, 108. [Google Scholar] [CrossRef]
- Heather, A.S.; Manson, S.M. Heights and locations of artificial structures in viewshed calculation: How close is close enough? Landsc. Urban Plan. 2007, 82, 257–270. [Google Scholar] [CrossRef]
- Zong, X.; Wang, T.; Skidmore, A.K.; Heurich, M. The impact of voxel size, forest type, and understory cover on visibility estimation in forests using terrestrial laser scanning. GIScience Remote Sens. 2021, 58, 323–339. [Google Scholar] [CrossRef]
- Sanim, K.; Kalaitzakis, M.; Kosaraju, B.; Kitzhaber, Z.; English, C.; Vitzilaios, N.; Myrick, M.; Hodgson, M.; Richardson, T. Development of an Aerial Drone System for Water Analysis and Sampling. In Proceedings of the 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, 21–24 June 2022; pp. 1601–1607. [Google Scholar] [CrossRef]
- Llobera, M. Modeling visibility through vegetation. Int. J. Geogr. Inf. Sci. 2007, 21, 799–810. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodgson, M.E.; Vitzilaios, N.I.; Myrick, M.L.; Richardson, T.L.; Duggan, M.; Sanim, K.R.I.; Kalaitzakis, M.; Kosaraju, B.; English, C.; Kitzhaber, Z. Mission Planning for Low Altitude Aerial Drones during Water Sampling. Drones 2022, 6, 209. https://doi.org/10.3390/drones6080209
Hodgson ME, Vitzilaios NI, Myrick ML, Richardson TL, Duggan M, Sanim KRI, Kalaitzakis M, Kosaraju B, English C, Kitzhaber Z. Mission Planning for Low Altitude Aerial Drones during Water Sampling. Drones. 2022; 6(8):209. https://doi.org/10.3390/drones6080209
Chicago/Turabian StyleHodgson, Michael E., Nikolaos I. Vitzilaios, Michael L. Myrick, Tammi L. Richardson, Matt Duggan, Kazi Ragib I. Sanim, Michail Kalaitzakis, Bhanuprakash Kosaraju, Caitlyn English, and Zechariah Kitzhaber. 2022. "Mission Planning for Low Altitude Aerial Drones during Water Sampling" Drones 6, no. 8: 209. https://doi.org/10.3390/drones6080209
APA StyleHodgson, M. E., Vitzilaios, N. I., Myrick, M. L., Richardson, T. L., Duggan, M., Sanim, K. R. I., Kalaitzakis, M., Kosaraju, B., English, C., & Kitzhaber, Z. (2022). Mission Planning for Low Altitude Aerial Drones during Water Sampling. Drones, 6(8), 209. https://doi.org/10.3390/drones6080209