Impediments to Construction Site Digitalisation Using Unmanned Aerial Vehicles (UAVs)
Abstract
:1. Introduction
2. Literature Review
2.1. Digitalising Construction Processes towards Enhanced Resilience and Sustainable Infrastructure Delivery
2.2. Role of Unmanned Aerial Vehicles in Digitalisation of Construction Sites
2.3. Impediments or Challenges to Construction Site Digitalisation Using Unmanned Arial Vehicles (UAVs)
3. Methods
Statistical Tools for Data Analysis
4. Results
4.1. Background Information
4.2. Results of Statistical Analyses
Descriptive Statistical Tests
Code | Challenges | Related Sources of Data |
---|---|---|
C1 | Regulations limiting operational clearances for flying drones | [31,39,40] |
C2 | Lack of training in AEC education | [3,41,42] |
C3 | Legal bottlenecks restricting beyond visual line of sight (BVLOS) operations | [31,43,44,45] |
C4 | Training cost | [2,7,46] |
C5 | Justifying cost–benefit use | [20,47] |
C6 | Low awareness in the industry | [2,8,47] |
C7 | Difficulty finding qualified pilots | [31,42,45] |
C8 | Difficulty getting safety or industry-specific training | [45,47,48] |
C9 | Public privacy and safety concerns | [7,49,50,51] |
C10 | Slow adoption in construction | [7,44,49] |
C11 | High initial capital investment | [7,44,49] |
C12 | Cost of switching brand/product | [8,13,45] |
C13 | Data processing software | [45,52,53] |
C14 | Limitations to project types | [45,47,52] |
C15 | Visibility in night operations | [31,45,47] |
C16 | Extensive training or certification requirements | [45,50,54] |
C17 | Liability and litigation from damage or injuries | [42,44,53,55] |
C18 | Cost of maintenance and software subscription cost | [44,50,52] |
C19 | Disposition of clients and project stakeholders | [8,44,54] |
C20 | Interoperability with existing systems | [8,44,52] |
4.3. Inferential Statistical Tests
Statistical Tests Based on Professional Disciplines
4.4. Challenges to Construction Site Digitalisation through Unmanned Aerial Vehicles (UAVs)—Inter-Group Comparisons
4.5. Comparative Barriers between Countries
4.6. Classification of the Key Barriers Based on Factor Analysis
5. Discussion of Survey Findings
5.1. Discussion of Key Cluster Factors after Factor Analysis
5.1.1. Economic/Cost-Related Factors
5.1.2. Technical and Regulatory Factors
5.1.3. Education and Organisation-Related Factors
5.2. Practical Implications of Research Findings
6. Conclusions and Recommendations
7. Limitations of the Study
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fagbenro, R.K.; Oyediran, O.S.; Onososen, A.O. Consulting Business Workflow and Design Performance Metrics for BIM Based Construction Design in Nigeria. ECS Trans. 2022, 107, 1029–1041. [Google Scholar] [CrossRef]
- Aiyetan, A.O.; Das, D.K. Use of Drones for construction in developing countries: Barriers and strategic interventions. Int. J. Constr. Manag. 2022. [Google Scholar] [CrossRef]
- Jeelani, I.; Gheisari, M. Safety challenges of UAV integration in construction: Conceptual analysis and future research roadmap. Saf. Sci. 2021, 144, 105473. [Google Scholar] [CrossRef]
- Altohami, A.; Haron, N.; Ales@alias, A.; Law, T. Investigating Approaches of Integrating BIM, IoT, and Facility Management for Renovating Existing Buildings: A Review. Sustainability 2021, 13, 3930. [Google Scholar] [CrossRef]
- Lundberg, O.; Nylén, D.; Sandberg, J. Unpacking construction site digitalization: The role of incongruence and inconsistency in technological frames. Constr. Manag. Econ. 2021, 40, 987–1002. [Google Scholar] [CrossRef]
- Gheisari, M.; Esmaeili, B. Unmanned Aerial Systems (UAS) for Construction Safety Applications Masoud. In Proceedings of the Construction Research Congress 2016, San Juan, Puerto Rico, 31 May–2 June 2016; pp. 2642–2650. [Google Scholar]
- Gheisari, M.; Esmaeili, B. Applications and requirements of unmanned aerial systems (UASs) for construction safety. Saf. Sci. 2019, 118, 230–240. [Google Scholar] [CrossRef]
- Zhou, S.; Gheisari, M. Unmanned aerial system applications in construction: A systematic review. Constr. Innov. 2018, 18, 453–468. [Google Scholar] [CrossRef]
- Onososen, A.O.; Musonda, I. Perceived Benefits of Automation and Artificial Intelligence in the AEC Sector: An Interpretive Structural Modeling Approach. Front. Built Environ. 2022, 8, 864814. [Google Scholar] [CrossRef]
- Golizadeh, H.; Hosseini, M.R.; Martek, I.; Edwards, D.; Gheisari, M.; Banihashemi, S.; Zhang, J. Scientometric Analysis of Research on “Remotely Piloted Aircraft”: A Research Agenda for the Construction Industry. Eng. Constr. Archit. Manag. 2019, 27, 634–657. [Google Scholar] [CrossRef]
- McNamara, A.; Sepasgozar, S.M.E. Barriers and Drivers of Intelligent Contract Implementation in Construction. In Proceedings of the 42nd AUBEA Conference 2018: Educating Building Professionals for the Future in the Globalised World, Singapore, 26–28 September 2018; pp. 281–293. [Google Scholar]
- Munawar, H.S.; Ullah, F.; Heravi, A.; Thaheem, M.J.; Maqsoom, A. Inspecting Buildings Using Drones and Computer Vision: A Machine Learning Approach to Detect Cracks and Damages. Drones 2021, 6, 5. [Google Scholar] [CrossRef]
- Eiris, R.; Benda, B.; Faris, R. Indrone: Visualizing Drone Flight Patterns for Indoor Building Inspection Tasks. In Enabling the Development and Implementation of Digital Twins: Proceedings of the 20th International Conference on Construction Applications of Virtual Reality, Middlesbrough, UK, 30 September–2 October 2020; Teesside University: Middlesbrough, UK, 2020; pp. 281–290. [Google Scholar]
- Yang, Y.; Liao, L.; Yang, H.; Li, S. An Optimal Control Strategy for Multi-UAVs Target Tracking and Cooperative Competition. IEEE/CAA J. Autom. Sin. 2020, 8, 1931–1947. [Google Scholar] [CrossRef]
- Jiang, F.; Pourpanah, F.; Hao, Q. Design, Implementation, and Evaluation of a Neural-Network-Based Quadcopter UAV System. IEEE Trans. Ind. Electron. 2019, 67, 2076–2085. [Google Scholar] [CrossRef]
- Cheng, Z.; Pei, H.; Li, S. Neural-Networks Control for Hover to High-Speed-Level-Flight Transition of Ducted Fan UAV With Provable Stability. IEEE Access 2020, 8, 100135–100151. [Google Scholar] [CrossRef]
- Wu, Q.; Shen, X.; Jin, Y.; Chen, Z.; Li, S.; Khan, A.H.; Chen, D. Intelligent Beetle Antennae Search for UAV Sensing and Avoidance of Obstacles. Sensors 2019, 19, 1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabino, H.; Almeida, R.V.; de Moraes, L.B.; da Silva, W.P.; Guerra, R.; Malcher, C.; Passos, D.; Passos, F.G. A systematic literature review on the main factors for public acceptance of drones. Technol. Soc. 2022, 71, 102097. [Google Scholar] [CrossRef]
- Saka, A.B.; Chan, D.W.M. A Scientometric Review and Metasynthesis of Building Information Modelling (BIM) Research in Africa. Buildings 2019, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.G.; Gheisari, M.; Alarcón, L.F. UAV Integration in Current Construction Safety Planning and Monitoring Processes: Case Study of a High-Rise Building Construction Project in Chile. J. Manag. Eng. 2020, 36, 5020005. [Google Scholar] [CrossRef]
- Onososen, A.O.; Musonda, I. Research focus for construction robotics and human-robot teams towards resilience in construction: Scientometric review. J. Eng. Des. Technol. 2022. [Google Scholar] [CrossRef]
- World Business Council for Sustainable Development (WBCSD). Digitalization of the Built Environment; WBCSD: Geneva, Switzerland, 2021. [Google Scholar]
- Gumbo, T.; Moyo, T.; Ndwandwe, B.; Risimati, B.; Mbatha, S.G. Urban Public Transport Systems Innovation in the Fourth Industrial Revolution Era: Global South Perspectives, Reflections and Conjectures; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Tjebane, M.M.; Musonda, I.; Okoro, C. Organisational Factors of Artificial Intelligence Adoption in the South African Construction Industry. Front. Built Environ. 2022, 8, 823998. [Google Scholar] [CrossRef]
- Salama, M.R.; Srinivas, S. Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites. Transp. Res. Part E Logist. Transp. Rev. 2022, 164, 102788. [Google Scholar] [CrossRef]
- Kloster, K.; Moeini, M.; Vigo, D.; Wendt, O. The multiple traveling salesman problem in presence of drone- and robot-supported packet stations. Eur. J. Oper. Res. 2023, 305, 630–643. [Google Scholar] [CrossRef]
- Flemons, K.; Baylis, B.; Khan, A.Z.; Kirkpatrick, A.W.; Whitehead, K.; Moeini, S.; Schreiber, A.; Lapointe, S.; Ashoori, S.; Arif, M.; et al. The use of drones for the delivery of diagnostic test kits and medical supplies to remote First Nations communities during Covid-19. Am. J. Infect. Control. 2022, 50, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Masmoudi, M.A.; Mancini, S.; Baldacci, R.; Kuo, Y.-H. Vehicle routing problems with drones equipped with multi-package payload compartments. Transp. Res. Part E Logist. Transp. Rev. 2022, 164, 102757. [Google Scholar] [CrossRef]
- Henriette, E.; Feki, M.; Boughzala, I. Digital Transformation Challenges Recommended. Mediterr. In Proceedings of the Mediterranean Conference on Information Systems (MCIS), Paphos, Cyprus, 4–6 September 2016; p. 33. [Google Scholar]
- Nichols, B. Challenges in Making the Transition to Digital Engineering. 2021. Available online: https://insights.sei.cmu.edu/blog/some-challenges-in-making-the-transition-to-digital-engineering/ (accessed on 15 October 2022).
- Murillo, M.A.; Alvia, J.E.; Realpe, M. Beyond Visual and Radio Line of Sight UAVs Monitoring System Through Open Software in a Simulated Environment; Springer International Publishing: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W. Concomitant impediments to the implementation of smart sustainable practices in the built environment. Sustain. Prod. Consum. 2019, 21, 239–251. [Google Scholar] [CrossRef]
- Ozumba, A.; Shakantu, W. Exploring challenges to ICT utilisation in construction site management. Constr. Innov. 2018, 18, 321–349. [Google Scholar] [CrossRef]
- Badamasi, A.A.; Aryal, K.R.; Makarfi, U.U.; Dodo, M. Drivers and barriers of virtual reality adoption in UK AEC industry. Eng. Constr. Arch. Manag. 2021, 29, 1307–1318. [Google Scholar] [CrossRef]
- Onososen, A.; Musonda, I. Barriers to BIM-Based Life Cycle Sustainability Assessment for Buildings: An Interpretive Structural Modelling Approach. Buildings 2022, 12, 324. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS; SAGE Publications Inc.: New York, NY, USA, 2009. [Google Scholar]
- Knight, A.; Ruddock, L. Advanced Research Methods in the Built Environment; Willey-Blackwell: Hoboken, NJ, USA, 2008. [Google Scholar]
- Delgado, J.M.D.; Oyedele, L.; Ajayi, A.; Akanbi, L.; Akinade, O.; Bilal, M.; Owolabi, H. Robotics and automated systems in construction: Understanding industry-specific challenges for adoption. J. Build. Eng. 2019, 26, 100868. [Google Scholar] [CrossRef]
- Mahbub, R. An Investigation into the Barriers to the Implementation of Automation and Robotics Technologies in the Construction Industry; Queensland University of Technology: Brisbane, Australia, 2015. [Google Scholar]
- Hamma-Adama, M.H.; Polytechnic, N.K.; Kouider, T.; Salman, H. Analysis of Barriers and Drivers for BIM Adoption. Int. J. BIM Eng. Sci. 2020, 3, 18–41. [Google Scholar] [CrossRef]
- Vite, C.; Morbiducci, R. Optimizing the Sustainable Aspects of the Design Process through Building Information Modeling. Sustainability 2021, 13, 3041. [Google Scholar] [CrossRef]
- Hodgson, M.E.; Sella-Villa, D. State-level statutes governing unmanned aerial vehicle use in academic research in the United States. Int. J. Remote. Sens. 2021, 42, 5366–5395. [Google Scholar] [CrossRef]
- Hsieh, T.-C.; Ming-Chien, H.; Mai-Lun, C.; Pay-Jiing, W. Challenges of UAVs Adoption for Agricultural Pesticide Spraying: A Social Cognitive Perspective. Preprints 2020, 2020010121. [Google Scholar] [CrossRef] [Green Version]
- Mendes, E.; Albeaino, G.; Brophy, P.; Gheisari, M.; Jeelani, I. Working Safely with Drones: A Virtual Training Strategy for Workers on Heights. Constr. Res. Congr. 2022, 3, 964–973. [Google Scholar] [CrossRef]
- Xu, C.; Liao, X.; Tan, J.; Ye, H.; Lu, H. Recent Research Progress of Unmanned Aerial Vehicle Regulation Policies and Technologies in Urban Low Altitude. IEEE Access 2020, 8, 74175–74194. [Google Scholar] [CrossRef]
- Jackman, A. Domestic drone futures. Polit. Geogr. 2022, 97, 102653. [Google Scholar] [CrossRef]
- Sari, T.; Rachmawati, N.; Kim, S. Unmanned Aerial Vehicles (UAV) Integration with Digital Technologies toward Construction 4.0: A Systematic Literature Review. Sustainability 2022, 14, 5708. [Google Scholar]
- Sakib, N.; Chaspari, T.; Ahn, C.R.; Behzadan, A.H. An Experimental Study of Wearable Technology and Immersive Virtual Reality. In Proceedings of the EG-ICE 2020 Workshop on Intelligent Computing in Engineering, Berlin, Germany, 1–4 July 2020. [Google Scholar]
- Irizarry, J.; Gheisari, M.; Walker, B.N. Usability Assessment of Drone Technology as Safety Inspection Tools. Electron. J. Inf. Technol. Constr. 2012, 17, 194–212. [Google Scholar]
- Gheisari, M.; Rashidi, A.; Esmaeili, B. Using Unmanned Aerial Systems for Automated Fall Hazard Monitoring. Constr. Res. Congr. 2018 2018, 62–72. [Google Scholar] [CrossRef]
- Sakib, N.; Chaspari, T.; Behzadan, A.H. Physiological Data Models to Understand the Effectiveness of Drone Operation Training in Immersive Virtual Reality. J. Comput. Civ. Eng. 2021, 35, 04020053. [Google Scholar] [CrossRef]
- Yerebakan, M.O.; Hao, S.; Xu, K.; Gheisari, M.; Jeelani, I.; Hu, B. Effect of Illumination on Human Drone Interaction Tasks: An Exploratory Study. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2021, 65, 1485–1489. [Google Scholar] [CrossRef]
- Albeaino, G.; Eiris, R.; Gheisari, M.; Issa, R.R.A. Development of a VR-Based Drone-Mediated Building Inspection Training Environment. Comput. Civ. Eng. 2021, 1401–1408. [Google Scholar] [CrossRef]
- Eiris Pereira, R.; Zhou, S.; Gheisari, M. Integrating the Use of UAVs and Photogrammetry into a Construction Management Course: Lessons Learned. In Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC 2018) and the International AEC/FM Hackathon, Berlin, Germany, 20–25 July 2018. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A.; Jhanjhi, N.Z.; Brohi, S.N. Emerging Use of UAV’S: Secure Communication Protocol Issues and Challenges; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Lingard, H.; Rowlinson, S. Letter to the Editor. Constr. Manag. Econ. 2006, 24, 1107–1109. [Google Scholar] [CrossRef]
- Xu, Y.; Yeung, J.F.; Chan, A.P.; Chan, D.W.; Wang, S.Q.; Ke, Y. Developing a risk assessment model for PPP projects in China—A fuzzy synthetic evaluation approach. Autom. Constr. 2010, 19, 929–943. [Google Scholar] [CrossRef]
- Fox, P.; Skitmore, M. Factors facilitating construction industry development. Build. Res. Inf. 2007, 35, 178–188. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Doloi, H. BOT application in China: Driving and impeding factors. Int. J. Proj. Manag. 2008, 26, 388–398. [Google Scholar] [CrossRef]
- Osborne, J.W.; Costello, A.B. Sample Size and Subject to Item Ratio in Principal Components Analysis. Pract. Assess. Res. Eval. 2004, 9, 11. [Google Scholar]
- Malhotra, N.K.; Birks, D.F. Marketing Research: An Applied Research; Prentice Hall: London, UK, 2007; Volume 4. [Google Scholar]
- Hair, J.; Anderson, R.; Babin, B.; Black, W. Multivariate Data Analysis; Cengage: Melbourne, Australia, 2010; p. 758. [Google Scholar]
- Chan, D.W.; Olawumi, T.O.; Ho, A.M. Critical success factors for building information modelling (BIM) implementation in Hong Kong. Eng. Constr. Arch. Manag. 2019, 26, 1838–1854. [Google Scholar] [CrossRef]
- Guadagnoli, E.; Velicer, W.F. Relation of sample size to the stability of component patterns. Psychol. Bull. 1988, 103, 265–275. [Google Scholar] [CrossRef]
- Sato, T. Factor Analysis in Personality Psychology. J. Psychol. Interdiscip. Appl. 2005, 25, 424–541. [Google Scholar]
- Babatunde, S.O.; Ekundayo, D.; Adekunle, A.O.; Bello, W. Comparative Analysis of Drivers to BIM Adoption among AEC Firms in Developing Countries: A Case of Nigeria. J. Eng. Des. Technol. 2020, 18, 1425–1447. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Chen, L.; Santhanam, R. Will video be the next generation of e-commerce product reviews? Presentation format and the role of product type. Decis. Support Syst. 2015, 73, 85–96. [Google Scholar] [CrossRef]
- Onososen, A.; Musonda, I.; Tjebane, M.M. Drivers of BIM-Based Life Cycle Sustainability Assessment of Buildings: An Interpretive Structural Modelling Approach. Sustainability 2022, 14, 11052. [Google Scholar] [CrossRef]
- Bayhan, H.G.; Demirkesen, S.; Zhang, C.; Tezel, A. A lean construction and BIM interaction model for the construction industry. Prod. Plan. Control. 2022. [Google Scholar] [CrossRef]
- Hancock, P.A.; Kajaks, T.; Caird, J.K.; Chignell, M.H.; Mizobuchi, S.; Burns, P.C.; Feng, J.; Fernie, G.R.; Lavallière, M.; Noy, I.Y.; et al. Challenges to Human Drivers in Increasingly Automated Vehicles. Hum. Factors J. Hum. Factors Ergon. Soc. 2020, 62, 310–328. [Google Scholar] [CrossRef] [PubMed]
- Oladiran, O.; Onatayo, D. Evaluating Change Orders and their Impacts on Construction Project Performance in Lagos, Nigeria. FUTY J. Environ. 2018, 12, 81–89. [Google Scholar]
- Onososen, A.; Osanyin, O.; Adeyemo, M. Drivers and Barriers to the Implementation of Green Building Development. PM World J. 2019, 9, 1–15. [Google Scholar]
- Albeaino, G.; Gheisari, M.; Issa, R.R.A. Integration of a UAS-Photogrammetry Module in a Technology-Based Construction Management Course. Epic Ser. Built Environ. 2022, 3, 497–505. [Google Scholar] [CrossRef]
- Oladiran, O.; Onatayo, D. Labour productivity: Perception of site managers on building projects. LAUTECH J. Civ. Environ. Stud. 2019, 2. [Google Scholar] [CrossRef]
Factors | Organisational Setups | Significance | Factors | Organisational Setups | Significance |
---|---|---|---|---|---|
C2 | Project Manager vs. Quantity Surveyor | 0.046 | C5 | Engineer (Civil, M&E Building Services) vs. Quantity Surveyor | 0.064 |
C2 | Quantity Surveyor vs. Project Manager | 0.046 | C5 | Engineer (Civil, M&E Building Services) vs. Project Manager | 0.034 |
C3 | Engineer (Civil, M&E Building Services) vs. Project Manager | 0.043 | C5 | Construction Manager vs. Project Manager | 0.043 |
C5 | Project Manager vs. Construction Manager | 0.043 | |||
C5 |
Engineer (Civil, M&E Building Services) | Quantity Surveyor | Construction Manager | Architect | Project Manager | Overall | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | R | Mean | R | Mean | R | Mean | R | Mean | R | Mean | SD | R | F | Sig. | |
C13 | 1.2653 | 15 | 2.1250 | 18 | 2.2143 | 17 | 1.5417 | 18 | 1.3043 | 18 | 1.57 | 0.84 | 17 | 10.746 | <0.001 |
C7 | 1.6939 | 12 | 2.1667 | 12 | 2.5714 | 8 | 2.0417 | 12 | 1.6304 | 11 | 1.91 | 0.80 | 11 | 7.019 | <0.001 |
C2 | 1.8163 | 11 | 2.1667 | 11 | 2.0714 | 20 | 2.1250 | 11 | 1.7391 | 10 | 1.94 | 0.80 | 10 | 3.128 | 0.010 |
C6 | 1.6531 | 13 | 2.1667 | 15 | 2.5714 | 7 | 1.7083 | 15 | 1.5652 | 15 | 1.83 | 0.80 | 13 | 7.928 | <0.001 |
C15 | 1.8163 | 10 | 1.2917 | 6 | 2.2857 | 12 | 2.4167 | 6 | 1.6087 | 12 | 1.84 | 0.84 | 12 | 9.111 | <0.001 |
C14 | 1.0204 | 20 | 2.1250 | 17 | 2.7143 | 1 | 1.6250 | 17 | 1.3913 | 16 | 1.58 | 0.97 | 16 | 15.724 | <0.001 |
C18 | 3.2041 | 5 | 2.2500 | 1 | 2.2857 | 7 | 2.8333 | 1 | 2.2609 | 6 | 2.65 | 1.22 | 4 | 4.291 | 0.001 |
C16 | 1.9388 | 9 | 3.9167 | 8 | 2.1429 | 18 | 2.3333 | 8 | 1.5870 | 13 | 2.24 | 1.00 | 9 | 43.675 | <0.001 |
C20 | 1.0204 | 19 | 3.8750 | 16 | 2.5000 | 9 | 1.6250 | 16 | 1.3478 | 17 | 1.81 | 1.23 | 15 | 56.736 | <0.001 |
C12 | 1.0204 | 18 | 1.2500 | 20 | 2.3571 | 11 | 1.4583 | 20 | 1.1739 | 20 | 1.33 | 0.83 | 20 | 12.630 | <0.001 |
C19 | 1.0204 | 17 | 1.2500 | 19 | 2.2143 | 16 | 1.4583 | 19 | 1.2174 | 19 | 1.33 | 0.81 | 19 | 11.155 | <0.001 |
C1 | 3.3265 | 2 | 4.8750 | 3 | 2.7143 | 4 | 2.7500 | 3 | 2.8913 | 2 | 3.29 | 1.17 | 2 | 17.735 | <0.001 |
C11 | 3.3265 | 1 | 4.8750 | 2 | 2.7143 | 3 | 2.7500 | 2 | 2.9348 | 1 | 3.30 | 1.18 | 1 | 16.639 | <0.001 |
C5 | 3.2449 | 3 | 2.2500 | 5 | 2.7143 | 2 | 2.5417 | 5 | 2.7609 | 3 | 2.80 | 1.12 | 3 | 3.205 | 0.009 |
C17 | 2.6939 | 6 | 2.2083 | 10 | 2.6429 | 6 | 2.2917 | 10 | 2.3913 | 4 | 2.48 | 0.79 | 6 | 2.214 | 0.056 |
C9 | 1.4286 | 14 | 2.1250 | 14 | 2.5000 | 10 | 1.7917 | 14 | 1.7826 | 9 | 1.82 | 0.89 | 14 | 6.401 | <0.001 |
C8 | 2.6122 | 7 | 2.2083 | 9 | 2.6429 | 5 | 2.2917 | 9 | 2.0435 | 7 | 2.35 | 0.92 | 7 | 2.749 | 0.021 |
C4 | 2.4898 | 8 | 2.2083 | 7 | 2.2143 | 15 | 2.3750 | 7 | 1.8696 | 8 | 2.24 | 0.95 | 8 | 2.866 | 0.017 |
C10 | 1.2245 | 16 | 1.2500 | 13 | 2.0714 | 19 | 1.8750 | 13 | 1.5870 | 14 | 1.55 | 0.87 | 18 | 6.889 | <0.001 |
C3 | 3.2041 | 4 | 2.2500 | 4 | 2.2857 | 13 | 2.6250 | 4 | 2.3043 | 5 | 2.63 | 1.24 | 5 | 3.785 | 0.003 |
S/N | Impediments | Nigeria | South Africa | United States of America | |||
---|---|---|---|---|---|---|---|
Mean | Rank | Mean | Rank | Mean | Rank | ||
1 | Regulations limiting operational clearances for flying drones | 2.3182 | 6 | 2.9205 | 4 | 4.3214 | 1 |
2 | Lack of training in AEC education | 2.0682 | 9 | 1.9205 | 10 | 2.0357 | 14 |
3 | Legal bottlenecks restricting beyond visual line of sight (BVLOS) operations | 2.0000 | 11 | 1.2841 | 17 | 2.0714 | 9 |
4 | Training cost | 2.4545 | 5 | 1.8977 | 11 | 2.0357 | 11 |
5 | Justifying cost–benefit use | 2.5682 | 4 | 2.4773 | 7 | 2.0357 | 12 |
6 | Low awareness in the industry | 1.9773 | 12 | 1.2841 | 18 | 2.0357 | 13 |
7 | Difficulty finding qualified pilots | 1.5000 | 18 | 2.9091 | 5 | 4.3214 | 2 |
8 | Difficulty getting safety or industry-specific training | 2.3182 | 7 | 2.7045 | 6 | 2.0714 | 7 |
9 | Public privacy and safety concerns | 1.5909 | 17 | 1.7955 | 12 | 2.0714 | 5 |
10 | Slow adoption in construction | 2.0455 | 10 | 1.9659 | 9 | 2.0357 | 15 |
11 | High initial capital investment | 2.9318 | 1 | 3.1932 | 1 | 2.0714 | 6 |
12 | Cost of switching brand/product | 1.8864 | 13 | 1.7614 | 13 | 2.0357 | 16 |
13 | Data processing software | 1.7727 | 16 | 3.1818 | 3 | 1.2857 | 20 |
14 | Limitations to project types | 2.0909 | 8 | 3.1477 | 2 | 1.3214 | 18 |
15 | Visibility in night operations | 1.5000 | 19 | 1.2614 | 19 | 1.2857 | 19 |
16 | Extensive training or certification requirements | 1.8864 | 14 | 1.7386 | 14 | 3.5357 | 3 |
17 | Liability and litigation from damage or injuries | 1.7955 | 15 | 1.6477 | 15 | 3.5357 | 4 |
18 | Cost of maintenance and software subscription cost | 2.8636 | 2 | 1.4205 | 16 | 2.0714 | 10 |
19 | Disposition of clients and project stakeholders | 2.6136 | 3 | 1.2500 | 20 | 1.3214 | 17 |
20 | Interoperability with existing systems | 1.5000 | 20 | 2.3864 | 8 | 2.0714 | 8 |
Code | Challenges to Implementing | Factor Loading | Eigenvalue | Percentage of Variance Explained | Cumulative Percentage of Variance Explained |
---|---|---|---|---|---|
Technical and Regulatory Factors | 10.764 | 36.599 | 36.599 | ||
C1 | Regulations limiting operational clearances for flying drones | 0.961 | |||
C3 | Legal bottlenecks restricting beyond visual line of sight (BVLOS) operations | 0.955 | |||
C17 | Liability and litigation from damage or injuries | 0.952 | |||
C8 | Difficulty getting safety or industry-specific training | 0.915 | |||
C9 | Public privacy and safety concerns | 0.868 | |||
C20 | Interoperability with existing systems | 0.655 | |||
C13 | Data processing software | 0.634 | |||
C14 | Limitations to project types | 0.625 | |||
C15 | Visibility in night operations | 0.619 | |||
C1 | Regulations limiting operational clearances for flying drones | 0.961 | |||
Economic/Cost-related factors | 4.768 | 35.442 | 72.041 | ||
C11 | High initial capital investment | 0.923 | |||
C4 | Training cost | 0.919 | |||
C5 | Justifying cost–benefit use | 0.893 | |||
C12 | Cost of switching brand/product | 0.888 | |||
C18 | Cost of maintenance and software subscription cost | 0.887 | |||
C10 | Slow adoption in construction | 0.845 | |||
Education and Organisation-related factors | 2.279 | 17.018 | 89.059 | ||
C2 | Lack of training in AEC education | 0.836 | |||
C6 | Low awareness in the industry | 0.835 | |||
C7 | Difficulty finding qualified pilots | 0.794 | |||
C16 | Extensive training or certification required | 0.741 | |||
C19 | Disposition of clients and project stakeholders | 0.657 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onososen, A.O.; Musonda, I.; Onatayo, D.; Tjebane, M.M.; Saka, A.B.; Fagbenro, R.K. Impediments to Construction Site Digitalisation Using Unmanned Aerial Vehicles (UAVs). Drones 2023, 7, 45. https://doi.org/10.3390/drones7010045
Onososen AO, Musonda I, Onatayo D, Tjebane MM, Saka AB, Fagbenro RK. Impediments to Construction Site Digitalisation Using Unmanned Aerial Vehicles (UAVs). Drones. 2023; 7(1):45. https://doi.org/10.3390/drones7010045
Chicago/Turabian StyleOnososen, Adetayo Olugbenga, Innocent Musonda, Damilola Onatayo, Motheo Meta Tjebane, Abdullahi Babatunde Saka, and Rasaki Kolawole Fagbenro. 2023. "Impediments to Construction Site Digitalisation Using Unmanned Aerial Vehicles (UAVs)" Drones 7, no. 1: 45. https://doi.org/10.3390/drones7010045
APA StyleOnososen, A. O., Musonda, I., Onatayo, D., Tjebane, M. M., Saka, A. B., & Fagbenro, R. K. (2023). Impediments to Construction Site Digitalisation Using Unmanned Aerial Vehicles (UAVs). Drones, 7(1), 45. https://doi.org/10.3390/drones7010045