In Situ VTOL Drone-Borne Observations of Temperature and Relative Humidity over Dome C, Antarctica
Abstract
:1. Introduction
2. Instruments and Models
2.1. Drone
2.2. Vaisala PTU Sondes
2.3. HAMSTRAD
2.4. Numerical Weather Prediction Models
2.4.1. ARPEGE
2.4.2. AROME
2.5. LIDAR
3. Methodology
4. Results
4.1. Scientific Flight D08 on 2 January 2023
4.2. Scientific Flight D11 on 10 January 2023
4.3. Scientific Flight D12 on 11 January 2023
4.4. Scientific Flight D13 on 13 January 2023
5. Discussion
5.1. Drone Operation
5.2. Drone Instrumentation
5.3. Drone vs. Balloon Profiles
5.4. HAMSTRAD
5.5. ARPEGE and AROME Models
5.6. Clear Sky Conditions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lubin, D.; Chen, B.; Bromwich, D.H.; Somerville, R.C.; Lee, W.H.; Hines, K.M. The Impact of Antarctic Cloud Radiative Properties on a GCM Climate Simulation. J. Clim. 1998, 11, 447–462. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Nicolas, J.P.; Hines, K.M.; Kay, J.E.; Key, E.L.; Lazzara Lubin, D.; McFarquhar, G.M.; Gorodetskaya, I.V.; Grosvenor, D.P.; Lachlan-Cope, T.; et al. Tropospheric clouds in Antarctica. Rev. Geophys. 2012, 50, RG1004. [Google Scholar] [CrossRef] [Green Version]
- Lachlan-Cope, T. Antarctic clouds. Polar Res. 2010, 29, 150–158. [Google Scholar] [CrossRef]
- Grosvenor, D.P.; Choularton, T.W.; Lachlan-Cope, T.; Gallagher, M.W.; Crosier, J.; Bower, K.N.; Ladkin, R.S.; Dorsey, J.R. In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf. Atmos. Chem. Phys. 2012, 12, 11275–11294. [Google Scholar] [CrossRef] [Green Version]
- Lachlan-Cope, T.; Listowski, C.; O’Shea, S. The microphysics of clouds over the Antarctic Peninsula—Part 1: Observations. Atmos. Chem. Phys. 2016, 16, 15605–15617. [Google Scholar] [CrossRef] [Green Version]
- Grazioli, J.; Genthon, C.; Boudevillain, B.; Duran-Alarcon, C.; Del Guasta, M.; Madeleine, J.-B.; Berne, A. Measurements of precipitation in Dumont d’Urville, Adélie Land, East Antarctica. Cryosphere 2017, 11, 1797–1811. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, S.J.; Choularton, T.W.; Flynn, M.; Bower, K.N.; Gallagher, M.; Crosier, J.; Williams, P.; Crawford, I.; Fleming, Z.L.; Listowski, C.; et al. In situ measurements of cloud microphysics and aerosol over coastal Antarctica during the MAC campaign. Atmos. Chem. Phys. 2017, 17, 13049–13070. [Google Scholar] [CrossRef] [Green Version]
- Listowski, C.; Delanoë, J.; Kirchgaessner, A.; Lachlan-Cope, T.; King, J. Antarctic clouds, supercooled liquid water and mixed phase, investigated with DARDAR: Geographical and seasonal variations. Atmos. Chem. Phys. 2019, 19, 6771–6808. [Google Scholar] [CrossRef] [Green Version]
- King, J.C.; Argentini, S.A.; Anderson, P.S. Contrasts between the summertime surface energy balance and boundary layer structure at Dome C and Halley stations, Antarctica. J. Geophys. Res. Atmos. 2006, 111, D02105. [Google Scholar] [CrossRef]
- King, J.C.; Gadian, A.; Kirchgaessner, A.; Kuipers Munneke, P.; Lachlan-Cope, T.A.; Orr, A.; Reijmer, C.; Broeke, M.R.; van Wessem, J.M.; Weeks, M. Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models. J. Geophys. Res. Atmos. 2015, 120, 1335–1347. [Google Scholar] [CrossRef] [Green Version]
- Lawson, R.P.; Gettelman, A. Impact of Antarctic mixed-phase clouds on climate. Proc. Natl. Acad. Sci. USA 2014, 111, 18156–18161. [Google Scholar] [CrossRef] [PubMed]
- Ricaud, P.; Del Guasta, M.; Bazile, E.; Azouz, N.; Lupi, A.; Durand, P.; Attié, J.-L.; Veron, D.; Guidard, V.; Grigioni, P. Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica. Atmos. Chem. Phys. 2020, 20, 4167–4191. [Google Scholar] [CrossRef] [Green Version]
- Ricaud, P.; Del Guasta, M.; Lupi, A.; Roehrig, R.; Bazile, E.; Durand, P.; Attié, J.L.; Nicosia, A.; Grigioni, P. Supercooled liquid water clouds observed over Dome C, Antarctica: Temperature sensitivity and surface radiation impact. Atmos. Chem. Phys. Discuss. 2022, 1–38. [Google Scholar] [CrossRef]
- Leuenberger, D.; Haefele, A.; Omanovic, N.; Fengler, M.; Martucci, G.; Calpini, B.; Fuhrer, O.; Rossa, A. Improving high-impact Numerical Weather Prediction with lidar and drone observations. Bull. Am. Meteorol. Soc. 2020, 101, E1036–E1051. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, L.; Kral, S.T.; Bailey, S.C.; Frazier, A.E.; Jacob, J.D.; Reuder, J.; Brus, D.; Chilson, P.B.; Crick, C.; Detweiler, C.; et al. Intercomparison of small unmanned aircraft system (sUAS) measurements for atmospheric science during the LAPSE-RATE campaign. Sensors 2019, 19, 2179. [Google Scholar] [CrossRef] [Green Version]
- Tovar-Sánchez, A.; Román, A.; Roque-Atienza, D.; Navarro, G. Applications of unmanned aerial vehicles in Antarctic environmental research. Sci. Rep. 2021, 11, 21717. [Google Scholar] [CrossRef]
- Pina, P.; Vieira, G. UAVs for science in Antarctica. Remote Sens. 2022, 14, 1610. [Google Scholar] [CrossRef]
- Alaoui-Sosse, S.; Durand, P.; Medina, P.; Pastor, P.; Gavart, M.; Pizziol, S. BOREAL—A fixed-wing unmanned aerial system for the measurement of wind and turbulence in the atmospheric boundary layer. J. Atmos. Ocean. Tech. 2022, 39, 387–402. [Google Scholar] [CrossRef]
- Serke, D.; Hall, E.; Bognar, J.; Jordan, A.; Abdo, S.; Baker, K.; Seitel, T.; Nelson, M.; Ware, R.; McDonough, F.; et al. Supercooled liquid water content profiling case studies with a new vibrating wire sonde compared to a ground-based microwave radiometer. Atmos. Res. 2014, 149, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, C.; Petkov, B.; Benedetti, E.; Valenziano, L.; Vitale, V. Analysis of a 4 year radiosonde dataset at Dome C for characterizing temperature and moisture conditions of the Antarctic atmosphere. J. Geophys. Res. 2011, 116, D15304. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, C.; Petkov, B.H.; Benedetti, E. Annual cycles of pressure, temperature, absolute humidity and precipitable water from the radiosoundings performed at Dome C, Antarctica, over the 2005–2009 period. Antarct. Sci. 2012, 24, 637–658. [Google Scholar] [CrossRef]
- Miloshevich, L.M.; Vömel, H.; Whiteman, D.N.; Lesht, B.M.; Schmidlin, F.J.; Russo, F. Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res. 2006, 111, D09S10. [Google Scholar] [CrossRef] [Green Version]
- Miloshevich, L.M.; Vömel, H.; Whiteman, D.N.; Leblanc, T. Accuracy assessment and corrections of Vaisala RS92 radiosonde water vapour measurements. J. Geophys. Res. 2009, 114, D11305. [Google Scholar] [CrossRef] [Green Version]
- Ricaud, P.; Gabard, B.; Derrien, S.; Chaboureau, J.-P.; Rose, T.; Mombauer, A.; Czekala, H. HAMSTRAD-Tropo, A 183-GHz Radiometer Dedicated to Sound Tropospheric Water Vapor Over Concordia Station, Antarctica. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1365–1380. [Google Scholar] [CrossRef]
- Ricaud, P.; Genthon, C.; Durand, P.; Attié, J.-L.; Carminati, F.; Canut, G.; Vanacker, J.-F.; Moggio, L.; Courcoux, Y.; Pellegrini, A.; et al. Summer to Winter Diurnal Variabilities of Temperature and Water Vapor in the lowermost troposphere as observed by the HAMSTRAD Radiometer over Dome C, Antarctica. Bound. Lay. Meteorol. 2012, 143, 227–259. [Google Scholar] [CrossRef]
- Ricaud, P.; Bazile, E.; del Guasta, M.; Lanconelli, C.; Grigioni, P.; Mahjoub, A. Genesis of diamond dust, ice fog and thick cloud episodes observed and modelled above Dome C, Antarctica. Atmos. Chem. Phys. 2017, 17, 5221–5237. [Google Scholar] [CrossRef] [Green Version]
- Ricaud, P.; Grigioni, P.; Zbinden, R.; Attié, J.-L.; Genoni, L.; Galeandro, A.; Moggio, L.; Montaguti, S.; Petenko, I.; Legovini, P. Review of Tropospheric Temperature, Absolute Humidity and Integrated Water Vapour from the HAMSTRAD Radiometer installed at Dome C (Antarctica) over the period 2009–2014. Antarct. Sci. 2015, 27, 598–616. [Google Scholar] [CrossRef] [Green Version]
- Pailleux, J.; Geleyn, J.-F.; El Khatib, R.; Fischer, C.; Hamrud, M.; Thépaut, J.-N.; Rabier, F.; Andersson, E.; Salmond, D.; Burridge, D.; et al. Les 25 ans du système de prévision numérique du temps IFS/Arpège. Météorologie 2015, 89, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Cuxart, J.; Bougeault, P.; Redelsperger, J.-L. A turbulence scheme allowing for mesoscale and large-eddy simulations. Q. J. R. Meteorol. Soc. 2000, 126, 1–30. [Google Scholar] [CrossRef]
- Bazile, E.; Marquet, P.; Bouteloup, Y.; Bouyssel, F. The turbulent kinetic energy (TKE) scheme in the NWP models at Météo-France. In Proceedings of the Workshop on Diurnal Cycles and the Stable Boundary Layer, ECMWF, Reading, UK, 7–10 November 2011; pp. 127–136. [Google Scholar]
- Seity, Y.; Brousseau, P.; Malardel, S.; Hello, G.; Bénard, P.; Bouttier, F.; Lac, C.; Masson, V. The AROME-France convective-scale operational model. Mon. Weather. Rev. 2011, 139, 976–991. [Google Scholar] [CrossRef] [Green Version]
- Bazile, E.; Azouz, N.; Napoly, A.; Loo, C. Impact of the 1D sea-ice model GELATO in the global model ARPEGE. WCRP Rep. 12/2020. Res. Act. Earth Syst. Model. Rep. 2020, 50, 2. [Google Scholar]
- Mishchenko, M.I.; Hovenier, J.W.; Travis, L.D. (Eds.) Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications; Academic Press: Cambridge, MA, USA, 2000; Volume 14, pp. 393–416. [Google Scholar]
- Hogan, R.J.; Illingworth, A.J. The Effect of Specular Reflection on Spaceborne Lidar Measurements of Ice Clouds. Rep. ESA Retr. Algorithm EarthCARE Proj. 2003, 5. [Google Scholar]
- Greene, B.R.; Segales, A.R.; Waugh, S.; Duthoit, S.; Chilson, P.B. Considerations for temperature sensor placement on rotarywing unmanned aircraft systems. Atmos. Meas. Tech. 2018, 11, 5519–5530. [Google Scholar] [CrossRef] [Green Version]
- Greene, B.R.; Segales, A.R.; Bell, T.M.; Pillar-Little, E.A.; Chilson, P.B. Environmental and sensor integration influences on temperature measurements by rotary-wing unmanned aircraft systems. Sensors 2019, 19, 1470. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.R.; Buban, M.; Dumas, E.; Baker, C.B. On the use of rotary-wing aircraft to sample near-surface thermodynamic fields: Results from recent field campaigns. Sensors 2019, 19, 10. [Google Scholar] [CrossRef] [Green Version]
- Kimball, S.K.; Montalvo, C.J.; Mulekar, M.S. Assessing iMET-XQ performance and optimal placement on a small off-the-shelf, Rotary-Wing UAV, as a Function of Atmospheric Conditions. Atmosphere 2020, 11, 660. [Google Scholar] [CrossRef]
- Inoue, J.; Sato, K. Toward sustainable meteorological profiling in polar regions: Case studies using an inexpensive UAS on measuring lower boundary layers with quality of radiosondes. Env. Res. 2022, 205, 112468. [Google Scholar] [CrossRef]
- Inoue, J.; Sato, K. Wind speed measurement by an inexpensive and lightweight thermal anemometer on a small UAV. Drones 2022, 6, 289. [Google Scholar] [CrossRef]
- Alaoui-Sosse, S.; Durand, P.; Medina, P.; Pastor, P.; Lothon, M.; Cernov, I. OVLI-TA: An unmanned aerial system for measuring profiles and turbulence in the atmospheric boundary layer. Sensors 2019, 19, 581. [Google Scholar] [CrossRef] [Green Version]
- Elston, J.S.; Roadman, J.; Stachura, M.; Argrow, B.; Houston, A.; Frew, E. The tempest unmanned aircraft system for in situ observations of tornadic supercells: Design and VORTEX2 flight results. J. Field Robot. 2011, 28, 461–483. [Google Scholar] [CrossRef]
Dimensions | |
---|---|
Wingspan | 235 cm |
Length | 90 cm |
Height | 17 cm |
Weight and Payload | |
Empty weight | 3.3 kg |
Empty weight including battery | 5 kg |
Maximum takeoff weight | 6.2 kg |
Payload capacity | 1.2 kg |
Flight Characteristics at max payload | |
Cruise speed | 16 m/s (60 km/h) |
Maximum speed | 25 m/s (90 km/h) |
Maximum flight time | 1 h 50 min |
Range through air | 100 km |
Power | |
Battery type | LiPo |
Battery capacity | 23 Ah |
Tolerances | |
Maximum takeoff/landing wind | 9 m/s (33 km/h) |
Maximum wind cruise flight | 14 m/s (50 km/h) |
Operating temperature | Between −20 and +45 Celsius |
Maximum flight altitude amsl | 13,000 ft (4000 m) |
Flight # | Date YYMMDD | Time HH:MM UTC | S/T Flight | Rating | Max Height m | Duration Minutes | Distance km | Surface Wind m s−1 | Surface T ° Celsius |
---|---|---|---|---|---|---|---|---|---|
D03 | 221224 | 03:00 | T | G | 60 | 4 | 3 | 2 | −30 |
D04 | 221227 | 07:00 | T | U-TO | 200 | 7 | 6.2 | 5 | −30 |
D05 | 221228 | 06:30 | T | C-TO | 5 | −30 | |||
D06 | 221228 | 07:00 | T | U-TO | 200 | 12 | 8 | 3 | −25 |
D07 | 230102 | 06:30 | T | G | 200 | 12 | 8 | 2 | −25 |
D08 | 230102 | 10:00 | S | G | 400 | 16 | 15 | 2 | −25 |
D09 | 230103 | 10:00 | S | C-TO | 2 | −25 | |||
D10 | 230109 | 06:00 | T | G | 200 | 14 | 9 | 3 | −25 |
D11 | 230110 | 06:00 | S | G | 400 | 25 | 21.5 | 6 | −25 |
D12 | 230111 | 06:30 | S | G/C-La | 500 | 31 | 25 | 3 | −25 |
D13 | 230113 | 07:30 | S | G | 600 | 30 | 26.5 | 3 | −25 |
D14 | 230116 | 09:30 | S | C-TO | 5 | −25 | |||
D15 | 230117 | 07:00 | S | C-Fly | 5 | −30 |
Speed/m s−1 | D08 2 January | D11 10 January | D12 11 January | D13 13 January |
---|---|---|---|---|
Max Speed Horizontal | 27 | 33 | 28 | 28 |
Max Speed Up | 3 | 4 | 3 | 4 |
Max Speed Down | 6 | 6 | 6 | 5 |
Ground Speed | 25 | 32 | 28 | 27 |
Height Rate | 2 | 2 | 2 | 2 |
Average Speed FW | 23 | 20 | 21 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricaud, P.; Medina, P.; Durand, P.; Attié, J.-L.; Bazile, E.; Grigioni, P.; Guasta, M.D.; Pauly, B. In Situ VTOL Drone-Borne Observations of Temperature and Relative Humidity over Dome C, Antarctica. Drones 2023, 7, 532. https://doi.org/10.3390/drones7080532
Ricaud P, Medina P, Durand P, Attié J-L, Bazile E, Grigioni P, Guasta MD, Pauly B. In Situ VTOL Drone-Borne Observations of Temperature and Relative Humidity over Dome C, Antarctica. Drones. 2023; 7(8):532. https://doi.org/10.3390/drones7080532
Chicago/Turabian StyleRicaud, Philippe, Patrice Medina, Pierre Durand, Jean-Luc Attié, Eric Bazile, Paolo Grigioni, Massimo Del Guasta, and Benji Pauly. 2023. "In Situ VTOL Drone-Borne Observations of Temperature and Relative Humidity over Dome C, Antarctica" Drones 7, no. 8: 532. https://doi.org/10.3390/drones7080532
APA StyleRicaud, P., Medina, P., Durand, P., Attié, J. -L., Bazile, E., Grigioni, P., Guasta, M. D., & Pauly, B. (2023). In Situ VTOL Drone-Borne Observations of Temperature and Relative Humidity over Dome C, Antarctica. Drones, 7(8), 532. https://doi.org/10.3390/drones7080532