Rubber Tree Recognition Based on UAV RGB Multi-Angle Imagery and Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.2.1. Data Acquisition
2.2.2. UAV Image Processing
2.3. Convolutional Neural Network
2.3.1. Unet and Unet++ Network
2.3.2. Pyramid Scene Parsing Network
2.3.3. Multi-Scale Attention Network
2.3.4. ResNet50 Network
2.4. Rubber Tree Trunks Identification from CNNs
2.5. Accuracy Analysis
3. Results
3.1. Comparison of Learning Effect of Different DL Algorithms
3.2. Identification and Counting of Rubber Trees
3.3. Performance of DL Techniques with Multi-Angle Observation in Rubber Tree Identification
4. Discussion
4.1. Challenges in Canopy Segmentation of Single Trees in Rubber Forests
4.2. Effects of UAV Multi-Angle Observations and Orientations on Tree Identification in a Rubber Forest
4.3. Comparison of CNN Methods for Rubber Tree Identification
4.4. Implications of Tree Trunk Identification and Counting
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.; Yun, T.; Ma, J.; Kou, W.; Li, H.; Yang, C.; Xiao, X.; Zhang, X.; Sun, R.; Xie, G.; et al. High-precision stand age data facilitate the estimation of rubber plantation biomass: A case study of Hainan Island, China. Remote Sens. 2020, 12, 3853. [Google Scholar] [CrossRef]
- Liang, Y.; Kou, W.; Lai, H.; Wang, J.; Wang, Q.; Xu, W.; Wang, H.; Lu, N. Improved estimation of aboveground biomass in rubber plantations by fusing spectral and textural information from UAV-based RGB imagery. Ecol. Indic. 2022, 142, 109286. [Google Scholar] [CrossRef]
- Tang, J.; Pang, J.; Chen, M.; Guo, X.; Zeng, R. Biomass and its estimation model of rubber plantations in Xishuangbanna, Southwest China. Chin. J. Ecol. 2009, 28, 1942–1948. [Google Scholar]
- Kou, W.; Dong, J.; Xiao, X.; Hernandez, A.J.; Qin, Y.; Zhang, G.; Chen, B.; Lu, N.; Doughty, R. Expansion dynamics of deciduous rubber plantations in Xishuangbanna, China during 2000–2010. GISci. Remote Sens. 2018, 55, 905–925. [Google Scholar] [CrossRef]
- Azizan, F.A.; Kiloes, A.M.; Astuti, I.S.; Abdul Aziz, A. Application of optical remote sensing in rubber plantations: A systematic review. Remote Sens. 2021, 13, 429. [Google Scholar] [CrossRef]
- Kou, W.; Liang, C.; Wei, L.; Hernandez, A.; Yang, X. Phenology-based method for mapping tropical evergreen forests by integrating of MODIS and Landsat imagery. Forests 2017, 8, 34. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Sun, Y.; Zhao, Y.; Zhuang, H.; Ban, W.; Chen, Y.; Fu, E.; Chen, S.; Liu, J.; et al. Combining spectral and texture features of UAS-based multispectral images for maize leaf area index estimation. Remote Sens. 2022, 14, 331. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Zhou, C.; Yin, L.; Feng, X. Urban forest monitoring based on multiple features at the single tree scale by UAV. Urban For. Urban Green. 2021, 58, 126958. [Google Scholar] [CrossRef]
- Jin, W.; Ge, H.-L.; Du, H.-Q.; Xu, X.-J. A review on unmanned aerial vehicle remote sensing and its application. Remote Sens. Inf. 2009, 1, 88–92. [Google Scholar] [CrossRef]
- Han, P.; Ma, C.; Chen, J.; Chen, L.; Bu, S.; Xu, S.; Zhao, Y.; Zhang, C.; Hagino, T. Fast tree detection and counting on UAVs for sequential aerial images with generating orthophoto mosaicing. Remote Sens. 2022, 14, 4113. [Google Scholar] [CrossRef]
- Vélez, S.; Vacas, R.; Martín, H.; Ruano-Rosa, D.; Álvarez, S. A novel technique using planar area and ground shadows calculated from UAV RGB imagery to estimate pistachio tree (Pistacia vera L.) canopy volume. Remote Sens. 2022, 14, 6006. [Google Scholar] [CrossRef]
- Gan, Y.; Wang, Q.; Iio, A. Tree crown detection and delineation in a temperate deciduous forest from UAV RGB imagery using deep learning approaches: Effects of spatial resolution and species characteristics. Remote Sens. 2023, 15, 778. [Google Scholar] [CrossRef]
- Zhou, C.; Ye, H.; Hu, J.; Shi, X.; Hua, S.; Yue, J.; Xu, Z.; Yang, G. Automated counting of rice panicle by applying deep learning model to images from unmanned aerial vehicle platform. Sensors 2019, 19, 3106. [Google Scholar] [CrossRef] [PubMed]
- Zaji, A.; Liu, Z.; Xiao, G.; Bhowmik, P.; Sangha, J.S.; Ruan, Y. Wheat spike localization and counting via hybrid UNet architectures. Comput. Electron. Agric. 2022, 203, 107439. [Google Scholar] [CrossRef]
- Kitano, B.T.; Mendes, C.C.T.; Geus, A.R.; Oliveira, H.C.; Souza, J.R. Corn plant counting using deep learning and UAV images. IEEE Geosci. Remote Sens. Lett. 2019, 1–5. [Google Scholar] [CrossRef]
- Lin, Z.; Guo, W. Sorghum panicle detection and counting using unmanned aerial system images and deep learning. Front. Plant Sci. 2020, 11, 534853. [Google Scholar] [CrossRef]
- Fu, H.-Y.; Yue, Y.-K.; Wang, W.; Liao, A.; Xu, M.-Z.; Gong, X.; She, W.; Cui, G.-X. Ramie plant counting based on UAV remote sensing technology and deep learning. J. Nat. Fibers 2023, 20, 2159610. [Google Scholar] [CrossRef]
- Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Iqbal, J.; Alam, M. A novel semi-supervised framework for UAV based crop/weed classification. PLoS ONE 2021, 16, e0251008. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, B.; Yang, C.; Shi, Y.; Liao, Q.; Zhou, G.; Wang, C.; Xie, T.; Jiang, Z.; Zhang, D.; et al. Rapeseed stand count estimation at leaf development stages with UAV imagery and convolutional neural networks. Front. Plant Sci. 2020, 11, 617. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, Z.; Han, S.; Yan, H.; Zhou, B.; Li, J. A multi-scale approach to detecting standing dead trees in UAV RGB images based on improved faster R-CNN. PLoS ONE 2023, 18, e0281084. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Liao, I.Y. Improved Fast R-CNN with fusion of optical and 3D data for robust palm tree detection in high resolution UAV images. Int. J. Mach. Learn. Comput. 2020, 10, 122–127. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Qiao, J.; Li, L.; Wang, X.; Yao, J.; Liao, G. Automatic counting of rapeseed inflorescences using deep learning method and UAV RGB imagery. Front. Plant Sci. 2023, 14, 1101143. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, G.; Yang, X.; Xu, B.; Han, L.; Zhu, Y. Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network. Remote Sens. 2019, 11, 691. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, G.; Li, Y. Survey of application of deep learning in image recognition. Comput. Eng. Appl. 2019, 55, 20–36. [Google Scholar] [CrossRef]
- Nakajima, K.; Tanaka, Y.; Katsura, K.; Yamaguchi, T.; Watanabe, T.; Shiraiwa, T. Biomass estimation of world rice (Oryza sativa L.) core collection based on the convolutional neural network and digital images of canopy. Plant Prod. Sci. 2023, 26, 187–196. [Google Scholar] [CrossRef]
- Su, J.; Zhu, X.; Li, S.; Chen, W.-H. AI meets UAVs: A survey on AI empowered UAV perception systems for precision agriculture. Neurocomputing 2023, 518, 242–270. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A nested U-Net architecture for medical image segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Fan, T.; Wang, G.; Li, Y.; Wang, H. MA-Net: A multi-scale attention network for liver and tumor segmentation. IEEE Access 2020, 8, 179656–179665. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Momin, M.A.; Junos, M.H.; Mohd Khairuddin, A.S.; Abu Talip, M.S. Lightweight CNN model: Automated vehicle detection in aerial images. Signal Image Video Process. 2022, 17, 1209–1217. [Google Scholar] [CrossRef]
- Csillik, O.; Cherbini, J.; Johnson, R.; Lyons, A.; Kelly, M. Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks. Drones 2018, 2, 39. [Google Scholar] [CrossRef]
- Chen, G.; Shang, Y. Transformer for tree counting in aerial images. Remote Sens. 2022, 14, 476. [Google Scholar] [CrossRef]
- Djerriri, K.; Ghabi, M.; Karoui, M.S.; Adjoudj, R. Palm trees counting in remote sensing imagery using regression convolutional neural network. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2627–2630. [Google Scholar] [CrossRef]
- Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep learning based oil palm tree detection and counting for high-resolution remote sensing images. Remote Sens. 2017, 9, 22. [Google Scholar] [CrossRef]
- Osco, L.P.; Arruda, M.d.S.d.; Marcato Junior, J.; da Silva, N.B.; Ramos, A.P.M.; Moryia, É.A.S.; Imai, N.N.; Pereira, D.R.; Creste, J.E.; Matsubara, E.T.; et al. A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS J. Photogramm. Remote Sens. 2020, 160, 97–106. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Chen, X. Identification of navel orange trees based on deep learning algorithm YOLOv4. Sci. Surv. Mapp. 2022, 47, 135–144. [Google Scholar] [CrossRef]
- Bai, Y.; Nie, C.; Wang, H.; Cheng, M.; Liu, S.; Yu, X.; Shao, M.; Wang, Z.; Wang, S.; Tuohuti, N.; et al. A fast and robust method for plant count in sunflower and maize at different seedling stages using high-resolution UAV RGB imagery. Precis. Agric. 2022, 23, 1720–1742. [Google Scholar] [CrossRef]
- Aliero, M.M.; Bunza, R.M.; Al-Doksi, J. The usefulness of unmanned airborne vehicle (UAV) imagery for automated palm oil tree counting. Res. J. For. 2014, 1, 1–12. [Google Scholar]
- Wang, J.; Zhang, C.; Chen, Q.; Li, H.; Peng, X.; Bai, M.; Xu, Z.; Liu, H.; Chen, Y. The method of extracting information of cunninghamia lanceolata crown combined with RGB and LiDAR based on UAV. J. Southwest For. Univ. 2022, 42, 133–141. [Google Scholar]
- Kouadio, Y.J.; Obouayeba, S.; N’guessan, A.A.; Voui, B.B.N.B.; Soumahin, E.F. Agromorphological characterization of a rubber tree-teak agroforestry system in central Côte d’Ivoire. Asian J. Res. Agric. For. 2022, 8, 273–292. [Google Scholar] [CrossRef]
- Yun, T.; Jiang, K.; Hou, H.; An, F.; Chen, B.; Li, W.; Xue, L. Rubber Tree Crown segmentation and property retrieval using ground-based mobile LiDAR after natural disturbances. Remote Sens. 2019, 11, 903. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, J.; Han, Z.; Li, D.; Cao, Q.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cheng, T. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods 2019, 15, 17. [Google Scholar] [CrossRef]
- Ariza-Sentís, M.; Valente, J.; Kooistra, L.; Kramer, H.; Mücher, S. Estimation of spinach (Spinacia oleracea) seed yield with 2D UAV data and deep learning. Smart Agric. Technol. 2023, 3, 100129. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA; 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Wightman, R.; Touvron, H.; J’egou, H.E. ResNet strikes back: An improved training procedure in timm. arXiv 2021, arXiv:2110.00476. [Google Scholar]
- Shafiq, M.; Gu, Z. Deep residual learning for image recognition: A survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Farjon, G.; Liu, H.; Edan, Y. Deep-learning-based counting methods, datasets, and applications in agriculture: A review. Precis. Agric. 2023, 24, 1683–1711. [Google Scholar] [CrossRef]
- Hao, Z.; Lin, L.; Post, C.J.; Mikhailova, E.A.; Li, M.; Chen, Y.; Yu, K.; Liu, J. Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN). ISPRS J. Photogramm. Remote Sens. 2021, 178, 112–123. [Google Scholar] [CrossRef]
- Neupane, B.; Horanont, T.; Hung, N.D. Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV). PLoS ONE 2019, 14, e0223906. [Google Scholar] [CrossRef]
- Zhu, M.; Zhou, Z.; Zhao, X.; Huang, D.; Jiang, Y.; Wu, Y.; Cui, L. Recognition and extraction method of single dragon fruit plant in Plateau-Canyon areas based on UAV remote sensing. Trop. Geogr. 2019, 39, 502–511. [Google Scholar] [CrossRef]
- Chadwick, A.J.; Goodbody, T.R.H.; Coops, N.C.; Hervieux, A.; Bater, C.W.; Martens, L.A.; White, B.; Röeser, D. Automatic delineation and height measurement of regenerating conifer crowns under leaf-off conditions using UAV imagery. Remote Sens. 2020, 12, 4104. [Google Scholar] [CrossRef]
- Lu, N.; Wang, W.; Zhang, Q.; Li, D.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Baret, F.; Liu, S.; et al. Estimation of nitrogen nutrition status in winter wheat from unmanned aerial vehicle based multi-angular multispectral imagery. Front. Plant Sci. 2019, 10, 1601. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, X.; Huang, H.; Chen, M. Single tree structure parameter extraction of structure-from-motion with multi-view stereophotogrammetry. Sci. Surv. Mapp. 2018, 43, 108–114. [Google Scholar] [CrossRef]
- Hati, A.J.; Singh, R.R. AI-driven pheno-parenting: A deep learning based plant phenotyping trait analysis model on a novel soilless farming dataset. IEEE Access 2023, 11, 35298–35314. [Google Scholar] [CrossRef]
- Zhou, F.-Y.; Jin, L.; Dong, J. Review of convolutional neral network. Chin. J. Comput. 2017, 40, 23. [Google Scholar] [CrossRef]
- Torbati-Sarraf, H.; Niverty, S.; Singh, R.; Barboza, D.; De Andrade, V.; Turaga, P.; Chawla, N. Machine-learning-based algorithms for automated image segmentation techniques of transmission X-ray microscopy (TXM). JOM 2021, 73, 2173–2184. [Google Scholar] [CrossRef]
- Marcellino; Cenggoro, T.W.; Pardamean, B. UNET++ with scale pyramid for crowd counting. ICIC Express Lett. 2022, 16, 75–82. [Google Scholar] [CrossRef]
- Li, J.; Liu, K.; Hu, Y.; Zhang, H.; Heidari, A.A.; Chen, H.; Zhang, W.; Algarni, A.D.; Elmannai, H. Eres-UNet++: Liver CT image segmentation based on high-efficiency channel attention and Res-UNet+. Comput. Biol. Med. 2023, 158, 106501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, Y.; Onda, Y.; Hashimoto, A.; Gomi, T.; Chiu, C.; Inokoshi, S. A tree detection method based on trunk point cloud section in dense plantation forest using drone LiDAR data. For. Ecosyst. 2023, 10, 100088. [Google Scholar] [CrossRef]
Direction and Angle | Tree Number |
---|---|
−90° | 226 |
−45° SN | 216 |
−45° WE | 75 |
−60° SN | 410 |
−60° WE | 159 |
Method | Angle | Precision | Recall | F-Measure |
---|---|---|---|---|
ResNet-Unet++ | −90° | 0.979 | 0.901 | 93.8% |
−60° SN | 0.979 | 0.919 | 94.7% | |
−60° WE | 0.977 | 0.687 | 80.7% | |
−45° SN | 0.972 | 0.862 | 91.4% | |
−45° WE | 0.979 | 0.756 | 85.3% | |
ResNet-Unet | −90° | 0.983 | 0.824 | 90.0% |
−60° SN | 0.974 | 0.730 | 83.4% | |
−60° WE | 0.977 | 0.546 | 70.0% | |
−45° SN | 0.961 | 0.764 | 85.1% | |
−45° WE | 0.970 | 0.427 | 59.3% | |
ResNet-PSPnet | −90° | 0.965 | 0.090 | 16.4% |
−60° SN | 0.967 | 0.241 | 38.6% | |
−60° WE | 0.968 | 0.148 | 25.7% | |
−45° SN | 0.971 | 0.270 | 42.3% | |
−45° WE | 0.931 | 0.088 | 16.1% | |
ResNet-MAnet | −90° | 0.985 | 0.842 | 90.8% |
−60° SN | 0.985 | 0.839 | 90.5% | |
−60° WE | 0.974 | 0.611 | 75.1% | |
−45° SN | 0.950 | 0.711 | 81.3% | |
−45° WE | 0.982 | 0.531 | 68.9% |
Method | Detect | TP | FP | FN | Precision | Recall | F-Measure |
---|---|---|---|---|---|---|---|
ResNet-Unet++ | 74 | 72 | 2 | 3 | 0.973 | 0.960 | 96.6% |
ResNet-Unet | 61 | 61 | 0 | 14 | 1.000 | 0.813 | 89.7% |
ResNet-PSPnet | 16 | 16 | 0 | 59 | 1.000 | 0.213 | 35.2% |
ResNet-MAnet | 62 | 60 | 2 | 15 | 0.968 | 0.800 | 87.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Sun, Y.; Kou, W.; Xu, W.; Wang, J.; Wang, Q.; Wang, H.; Lu, N. Rubber Tree Recognition Based on UAV RGB Multi-Angle Imagery and Deep Learning. Drones 2023, 7, 547. https://doi.org/10.3390/drones7090547
Liang Y, Sun Y, Kou W, Xu W, Wang J, Wang Q, Wang H, Lu N. Rubber Tree Recognition Based on UAV RGB Multi-Angle Imagery and Deep Learning. Drones. 2023; 7(9):547. https://doi.org/10.3390/drones7090547
Chicago/Turabian StyleLiang, Yuying, Yongke Sun, Weili Kou, Weiheng Xu, Juan Wang, Qiuhua Wang, Huan Wang, and Ning Lu. 2023. "Rubber Tree Recognition Based on UAV RGB Multi-Angle Imagery and Deep Learning" Drones 7, no. 9: 547. https://doi.org/10.3390/drones7090547
APA StyleLiang, Y., Sun, Y., Kou, W., Xu, W., Wang, J., Wang, Q., Wang, H., & Lu, N. (2023). Rubber Tree Recognition Based on UAV RGB Multi-Angle Imagery and Deep Learning. Drones, 7(9), 547. https://doi.org/10.3390/drones7090547