A Drone-Based Structure from Motion Survey, Topographic Data, and Terrestrial Laser Scanning Acquisitions for the Floodgate Gaps Deformation Monitoring of the Modulo Sperimentale Elettromeccanico System (Venice, Italy)
Abstract
:1. Introduction
1.1. The MOSE System
1.1.1. Characteristics of the System
1.1.2. Rubber Joints and Floodgate Gaps Monitoring
1.2. Objectives of the Work
2. Materials and Methods
2.1. Topographic Surveys
2.2. TLS Surveys for the 3D Orientation of the Shoulder Caissons in the Treporti Barrier
2.3. SfM Photogrammetric Drone-Based Survey of the Raised Floodgates in the Treporti Barrier
3. Results and Discussion
3.1. The 3D Orientation of the Shoulder Caissons in the Treporti Barrier
3.2. The SfM 3D Photogrammetric Model and the Floodgate Gaps Measurements
3.3. Future Developments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, H.; Xu, X. Structure monitoring and deformation analysis of tunnel structure. Compos. Struct. 2021, 276, 114565. [Google Scholar] [CrossRef]
- Moyano, J.; Nieto-Julián, J.E.; Bienvenido-Huertas, D.; Marín-García, D. Validation of Close-Range Photogrammetry for Architectural and Archaeological Heritage: Analysis of Point Density and 3D Mesh Geometry. Remote Sens. 2020, 12, 3571. [Google Scholar] [CrossRef]
- Capolupo, A. Accuracy Assessment of Cultural Heritage Models Extracting 3D Point Cloud Geometric Features with RPAS SfM-MVS and TLS Techniques. Drones 2021, 5, 145. [Google Scholar] [CrossRef]
- Omidalizarandi, M.; Kargoll, B.; Paffenholz, J.-A.; Neumann, I. Accurate vision-based displacement and vibration analysis of bridge structures by means of an image-assisted total station. Adv. Mech. Eng. 2018, 10, 6. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D.; Alfio, V.S. Topographic Measurements and Statistical Analysis in Static Load Testing of Railway Bridge Piers. Infrastructures 2024, 9, 4. [Google Scholar] [CrossRef]
- Capra, A.; Bertacchini, E.; Castagnetti, C.; Rivola, R.; Dubbini, M. Recent approaches in geodesy and geomatics for structures monitoring. Rend. Lincei 2015, 26, 53–61. [Google Scholar] [CrossRef]
- Dardanelli, G.; Allegra, M.; Giammarresi, V.; Lo Brutto, M.; Pipitone, C.; Baiocchi, V. Geomatic methodologies for the study of Teatro Massimo in Palermo (Italy). In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Florence, Italy, 22–24 May 2017; Volume XLII-5/W1, pp. 475–480. [Google Scholar] [CrossRef]
- Yuwono, B.D.; Prasetyo, Y. Analysis Deformation Monitoring Techniques Using GNSS Survey and Terrestrial Survey (Case Studi: Diponegoro University Dam, Semarang, Indonesia). IOP Conf. Ser. Earth Environ. Sci. 2018, 313, 012045. [Google Scholar] [CrossRef]
- Magnaval, G.; Colette, T.; Boumeshal, M. Combination of Total Station and GNSS for the Monitoring of Civil Infrastructures in Dense Urban Areas. In Proceedings of the 10th European Workshop on Structural Health Monitoring, EWSHM, Palermo, Italy, 4–7 July 2022, Code 279319; Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2023; Volume 254, pp. 51–58. [Google Scholar]
- Selvakumaran, S.; Rossi, C.; Marinoni, A.; Webb, G.; Bennetts, J.; Barton, E.; Plank, S.; Middleton, C. Combined InSAR and Terrestrial Structural Monitoring of Bridges. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7141–7153. [Google Scholar] [CrossRef]
- Debus, P.; Rodehorst, V. Multi-scale Flight Path Planning for UAS Building Inspection. In Proceedings of the 18th International Conference on Computing in Civil and Building Engineering, Sao Paulo, Brazil, 18–20 August 2020; Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2021; Volume 98, pp. 1069–1085. [Google Scholar] [CrossRef]
- Galarreta, J.F.; Kerle, N.; Gerke, M. UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning. Nat. Hazards Earth Syst. Sci. 2015, 15, 1087–1101. [Google Scholar] [CrossRef]
- Hallermann, N.; Morgenthal, G.; Rodehorst, V. Unmanned aerial systems (UAS)—Case studies of vision-based monitoring of ageing structures. In Proceedings of the International Symposium Non-Destructive Testing in Civil Engineering, Berlin, Germany, 15–17 September 2015. [Google Scholar]
- Sankarasrinivasan, S.; Balasubramanian, E.; Karthik, K.; Chandrasekar, U.; Gupta, R. Health monitoring of civil structures with integrated UAV and image processing system. Procedia Comput. Sci. 2015, 54, 508–515. [Google Scholar] [CrossRef]
- Ellenberg, A.; Branco, L.; Krick, A.; Bartoli, I.; Kontsos, A. Use of unmanned aerial vehicle for quantitative infrastructure evaluation. J. Infrastruct. Syst. 2015, 21, 04014054. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Ahn, E.; Cho, S.; Shin, M.; Sim, S.H. Concrete crack identification using a UAV incorporating hybrid image processing. Sensors 2017, 17, 2052. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.; Wang, N.; Xu, P.; Song, G. New crack detection method for bridge inspection using UAV incorporating image processing. J. Aerosp. Eng. 2018, 31, 04018058. [Google Scholar] [CrossRef]
- Duque, L.; Seo, J.; Wacker, J. Bridge deterioration quantification protocol using UAV. J. Bridge Eng. 2018, 23, 04018080. [Google Scholar] [CrossRef]
- Rashidi, M.; Samali, B. Health monitoring of bridges using rpas. Lect. Notes Civ. Eng. 2021, 101, 209–218. [Google Scholar] [CrossRef]
- Germanese, D.; Leone, G.R.; Moroni, D.; Pascali, M.A.; Tampucci, M. Long-term monitoring of crack patterns in historic structures using UAVs and planar markers: A preliminary study. J. Imaging 2018, 4, 99. [Google Scholar] [CrossRef]
- Paglinawan, A.C.; Cruz, F.R.G.; Casi, N.D.; Ingatan, P.A.B.; Karganilla, A.B.C.; Moster, G.V.G. Crack Detection Using Multiple Image Processing for Unmanned Aerial Monitoring of Concrete Structure. In Proceedings of the IEEE Region 10 Annual International Conference, Jeju, Republic of Korea, 28–31 October 2018; pp. 2534–2538. [Google Scholar] [CrossRef]
- Kalaitzakis, M.; Kattil, S.R.; Vitzilaios, N.; Rizos, D.; Sutton, M. Dynamic structural health monitoring using a DIC-enabled drone. In Proceedings of the International Conference on Unmanned Aircraft Systems, ICUAS 2019, Atlanta, GE, USA, 11–14 June 2019; pp. 321–327. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Sagoe-Crentsil, K.; Zhang, J.; Duan, W. Intelligent robotic systems for structural health monitoring: Applications and future trends. Autom. Constr. 2022, 139, 104273. [Google Scholar] [CrossRef]
- Lee, S.B.; Song, M.; Kim, S.; Won, J.H. Change monitoring at expressway infrastructure construction sites using drone. Sens. Mater. 2020, 32, 3923–3933. [Google Scholar] [CrossRef]
- Yi, W.; Sutrisna, M. Drone scheduling for construction site surveillance. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 3–13. [Google Scholar] [CrossRef]
- Casierra, C.B.G.; Sánchez, C.G.C.; García, J.F.C.; Rivera, F.M.L. Methodology for Infrastructure Site Monitoring using Unmanned Aerial Vehicles (UAVs). Int. J. Adv. Comput. Sci. Appl. 2022, 13, 340–348. [Google Scholar] [CrossRef]
- Cuypers, S.; De Winter, H.; Bassier, M.; Vergauwen, M. Planimetric rail positioning using UAV photogrammetry: Towards automated and safe railway infrastructure monitoring. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Cairo, Egypt, 2–7 September 2023; Volume 48, pp. 589–596. [Google Scholar]
- De Sousa Mello, C.C.; Salim, D.H.C.; Simões, G.F. UAV-based landfill operation monitoring: A year of volume and topographic measurements. Waste Manag. 2022, 137, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Fabris, M.; Balin, M.; Monego, M. High-Resolution Real-Time Coastline Detection Using GNSS RTK, Optical, and Thermal SfM Photogrammetric Data in the Po River Delta, Italy. Remote Sens. 2023, 15, 5354. [Google Scholar] [CrossRef]
- Varbla, S.; Ellmann, A.; Puust, R. Centimetre-range deformations of built environment revealed by drone-based photogrammetry. Autom. Constr. 2021, 128, 103787. [Google Scholar] [CrossRef]
- Zrinjski, M.; Tupek, A.; Barković, Đ.; Polović, A. Industrial Masonry Chimney Geometry Analysis: A Total Station Based Evaluation of the Unmanned Aerial System Photogrammetry Approach. Sensors 2021, 21, 6265. [Google Scholar] [CrossRef] [PubMed]
- Adi, W.T.; Aghastya, A.; Prihatanto, R.; Agustriana, T.M. Measurement of railway ballast deficiency using UAV drone and total station by graphical, statistical, and volume comparison. In Proceedings of the International Conference on Mechanical Engineering for Emerging Technologies (ICOMEET 2021), Padang, Indonesia, 3–4 November 2021; Volume 2592, p. 050013. [Google Scholar] [CrossRef]
- Tomasicchio, G.R.; Salvadori, G.; Lusito, L.; Francone, A.; Saponieri, A.; Leone, E.; De Bartolo, S. A Statistical Analysis of the Occurrences of Critical Waves and Water Levels for the Management of the Operativity of the MoSE System in the Venice Lagoon. Stoch. Environ. Res. Risk Assess. 2022, 36, 2549–2560. [Google Scholar] [CrossRef]
- Casasso, A.; Di Molfetta, A.; Sethi, R. Groundwater monitoring at a building site of the tidal flood protection system ‘‘MOSE’’ in the Lagoon of Venice, Italy. Environ. Earth Sci. 2015, 73, 2397–2408. [Google Scholar] [CrossRef]
- Cavallaro, L.; Iuppa, C.; Foti, E. Effect of Partial Use of Venice Flood Barriers. J. Mar. Sci. Eng. 2017, 5, 58. [Google Scholar] [CrossRef]
- Umgiesser, G. The impact of operating the mobile barriers in Venice (MOSE) under climate change. J. Nat. Conserv. 2020, 54, 125783. [Google Scholar] [CrossRef]
- Gower, J.; Barale, V. The Rising Concern for Sea Level Rise: Altimeter Record and Geo-Engineering Debate. Remote Sens. 2024, 16, 262. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Hu, Z.; Zhang, G.; Liu, J.; Lyu, Y.; Gu, Y.; Huang, X.; Zhang, Q.; Liu, L. Flood Risk Assessment of Subway Systems in Metropolitan Areas under Land Subsidence Scenario: A Case Study of Beijing. Remote Sens. 2021, 13, 637. [Google Scholar] [CrossRef]
- Gower, J.C. Generalized procrustes analysis. Psychometrika 1975, 40, 33–51. [Google Scholar] [CrossRef]
- Goodall, C. Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. Ser. B Methodol. 1991, 53, 285–339. [Google Scholar] [CrossRef]
- Agisoft LLC. Agisoft Metashape User Manual; Professional Edition, Version 1.8; Agisoft LLC: St. Petersburg, Russia, 2022. [Google Scholar]
- Agisoft LLC. Metashape Python Reference, Release 1.8.2; Agisoft LLC: St. Petersburg, Russia, 2022. [Google Scholar]
- Monego, M.; Achilli, V.; Fabris, M.; Menin, A. 3-D Survey of Rocky Structures: The Dolomitic Spire of the Gusela del Vescovà. In Proceedings of the 1st International Workshop in Memory of Professor Raffaele Santamaria on R3 in Geomatics: Research, Results and Review, R3GEO 2019, Naples, Italy, 10–11 October 2019; Communications in Computer and Information Science 2020; Springer: Berlin/Heidelberg, Germany; Volume 1246, pp. 211–228.
- Fabris, M.; Fontana Granotto, P.; Monego, M. Expeditious Low-Cost SfM Photogrammetry and a TLS Survey for the Structural Analysis of Illasi Castle (Italy). Drones 2023, 7, 101. [Google Scholar] [CrossRef]
- Leica Geosystems. Available online: https://leica-geosystems.com/products/laser-scanners/software/leica-cyclone/leica-cyclone-register-360 (accessed on 28 July 2023).
- Pieraccini, M.; Dei, D.; Betti, M.; Bartoli, G.; Tucci, G.; Guardini, N. Dynamic identification of historic masonry towers through an expeditious and no-contact approach: Application to the “Torre del Mangia” in Siena (Italy). J. Cult. Herit. 2014, 15, 275–282. [Google Scholar] [CrossRef]
- Monego, M.; Fabris, M.; Menin, A.; Achilli, V. 3-D Survey applied to industrial archaeology by tls methodology. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Florence, Italy, 22–24 May 2017; Volume XLII-5/W1, pp. 449–455. [Google Scholar] [CrossRef]
- CloudCompare (Version 2.12 Alpha). Available online: http://www.cloudcompare.org/ (accessed on 15 February 2024).
- Sanseverino, A.; Messina, B.; Limongiello, M.; Guida, C.G. An HBIM Methodology for the Accurate and Georeferenced Reconstruction of Urban Contexts Surveyed by UAV: The Case of the Castle of Charles V. Remote Sens. 2022, 14, 3688. [Google Scholar] [CrossRef]
Barrier | Network | Horizontal | Vertical | |||||
---|---|---|---|---|---|---|---|---|
Points | Stations | Distances and Angles | Redundancy | Points | Trigonometric Differences in Elevation | Redundancy | ||
Treporti | External | 59 | 15 | 95 | 75 | 59 | 95 | 37 |
Internal | 129 | 18 | 243 | 231 | 129 | 243 | 115 | |
Malamocco | External | 42 | 11 | 85 | 89 | 42 | 85 | 44 |
Internal | 101 | 16 | 226 | 253 | 101 | 226 | 126 |
Barrier | Network | Differences in Coordinates: This Study—TE.MA Company | ||
---|---|---|---|---|
East (m) | North (m) | Elevation (m) | ||
Treporti | External | 0.0027 ± 0.0003 | 0.0017 ± 0.0002 | 0.0010 ± 0.0002 |
Internal | 0.0006 ± 0.0000 | 0.0042 ± 0.0003 | 0.0005 ± 0.0000 | |
Malamocco | External | 0.0009 ± 0.0001 | 0.0007 ± 0.0001 | 0.0019 ± 0.0002 |
Internal | 0.0023 ± 0.0002 | 0.0008 ± 0.0001 | 0.0027 ± 0.0002 |
Stairwell | Floor (mm) | Lateral Walls | Ceiling (mm) | |||
---|---|---|---|---|---|---|
1 (mm) | 2 (mm) | 3 (mm) | 4 (mm) | |||
East | 3.1 | 5.1 | 3.1 | 5.2 | 3.6 | 4.2 |
West | 2.3 | 3.8 | 5.4 | 3.5 | 4.9 | 4.4 |
Caissons | Calculated Distance (m) | Surveyed Distance (m) | Differences (m) |
---|---|---|---|
East shoulder caisson—Caisson 1 | 0.1890 | 0.1960 | 0.0070 |
Caisson 7—West shoulder caisson | 0.1898 | 0.1947 | 0.0049 |
Floodgates | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Max (m) | 18.887 | 19.907 | 19.920 | 19.894 | 19.894 | 19.921 | 19.902 | 19.884 |
Min (m) | 19.833 | 19.883 | 19.863 | 19.859 | 19.868 | 19.881 | 19.850 | 19.831 |
Mean (m) | 19.855 | 19.895 | 19.901 | 19.872 | 19.880 | 19.904 | 19.866 | 19.858 |
Standard deviation (m) | 0.0148 | 0.0067 | 0.0138 | 0.0109 | 0.0088 | 0.0107 | 0.0145 | 0.0109 |
Designed values (m) | 19.880 | 19.880 | 19.880 | 19.880 | 19.880 | 19.880 | 19.880 | 19.880 |
Comparison (m) | 0.025 | –0.015 | –0.021 | 0.008 | 0.000 | –0.024 | 0.014 | 0.022 |
Gaps Between Floodgates | 0–1 | 1–2 | 2–3 | 3–4 | 4–5 | 5–6 | 6–7 | 7–8 |
---|---|---|---|---|---|---|---|---|
Max (m) | 0.195 | 0.175 | 0.139 | 0.237 | 0.158 | 0.136 | 0.217 | 0.139 |
Min (m) | 0.169 | 0.124 | 0.094 | 0.202 | 0.116 | 0.112 | 0.189 | 0.118 |
Mean (m) | 0.184 | 0.142 | 0.124 | 0.218 | 0.137 | 0.125 | 0.203 | 0.132 |
Standard deviation (m) | 0.009 | 0.014 | 0.012 | 0.008 | 0.012 | 0.008 | 0.008 | 0.005 |
Designed values (m) | 0.170 | 0.120 | 0.120 | 0.200 | 0.120 | 0.120 | 0.200 | 0.120 |
Comparison (m) | –0.014 | –0.022 | –0.004 | –0.018 | –0.017 | –0.005 | –0.003 | –0.012 |
Survey Technique | Floodgate Gaps | ||
---|---|---|---|
0–1 | 3–4 | 6–7 | |
Topography—TLS (m) | 0.183 | 0.213 | 0.187 |
SfM photogrammetry (m) | 0.184 | 0.218 | 0.203 |
Differences (m) | –0.001 | –0.005 | –0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabris, M.; Monego, M. A Drone-Based Structure from Motion Survey, Topographic Data, and Terrestrial Laser Scanning Acquisitions for the Floodgate Gaps Deformation Monitoring of the Modulo Sperimentale Elettromeccanico System (Venice, Italy). Drones 2024, 8, 598. https://doi.org/10.3390/drones8100598
Fabris M, Monego M. A Drone-Based Structure from Motion Survey, Topographic Data, and Terrestrial Laser Scanning Acquisitions for the Floodgate Gaps Deformation Monitoring of the Modulo Sperimentale Elettromeccanico System (Venice, Italy). Drones. 2024; 8(10):598. https://doi.org/10.3390/drones8100598
Chicago/Turabian StyleFabris, Massimo, and Michele Monego. 2024. "A Drone-Based Structure from Motion Survey, Topographic Data, and Terrestrial Laser Scanning Acquisitions for the Floodgate Gaps Deformation Monitoring of the Modulo Sperimentale Elettromeccanico System (Venice, Italy)" Drones 8, no. 10: 598. https://doi.org/10.3390/drones8100598
APA StyleFabris, M., & Monego, M. (2024). A Drone-Based Structure from Motion Survey, Topographic Data, and Terrestrial Laser Scanning Acquisitions for the Floodgate Gaps Deformation Monitoring of the Modulo Sperimentale Elettromeccanico System (Venice, Italy). Drones, 8(10), 598. https://doi.org/10.3390/drones8100598