Dynamic Inversion-Enhanced U-Control of Quadrotor Trajectory Tracking
Abstract
:1. Introduction
- This is the first validity bench test to model-based U-control with UAV flights in a comprehensive procedure, from analytical formulation to simulation demonstration and real flight tests. The applied control system design procedure has general guidance to other industrial applications and is a representative showcase to disseminate U-control methodology.
- In the methodology of U-model-based control, this study proposes a robust compensator to ensure trajectory accuracy and robustness against disturbances in the model-based dynamic inversion. This is supplementary to robust U-control approaches.
- We expand U-sliding mode control (USMC) to MIMO systems from single-input and single-output (SISO) formulation [17].
- We lay a practically effective foundation/platform for establishing the U-control strategy in coping with the challenges posed by underactuation and coupling in the control of quadrotor MIMO systems.
- A series of bench tests of simulated and real experiments on a Parrot Mambo quadrotor are conducted to show the design framework from academic formulation to Simulink simulation and real flight tests. This framework could be used for various UAV or related mobile robot motion control system design.
2. Quadrotor Dynamics and U-Control
2.1. Quadcopter System Overview
2.1.1. Assumptions
2.1.2. Frames of Reference
2.1.3. Rotor Dynamics
2.1.4. Translational Subsystem
2.1.5. Rotational Subsystem
2.2. Model-Based U-Control Platform
2.2.1. Design of U-Controller
2.2.2. U-Polynomial Realisation
2.2.3. U-State Space Realisation
2.3. Determining the Dynamic Inverse
2.4. Compensated Plant Inverter Design
3. Main Results
3.1. Model-Based U-Control of the Rotational Subsystem
3.2. Model-Based U-Control of Translational Subsystem
3.2.1. Altitude Controller
3.2.2. Model-Based Position U-Controller
- controls the Roll and lateral motion (sideways movement).
- controls the pitch and longitudinal motion (forward/backward movement).
- controls the thrust and vertical motion (up/down movement).
3.3. Robust Compensator Design Procedure
4. Discussions
- The actuator saturation could limit the SMC for large control inputs.
- Comparing the model-free trial-and-error PID (which is time-consuming in the gain tuning and difficult to achieve desired performance) embedded in the Simulink, the model-based U-control requires a nominal model for each different type of UAV, so it requires more design and implementation expertise/cost in calibration.
- More effective model-free control with merits in concise implementation and easy robust tuning could be considered in the next stage of this research.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SISO | single-input single-output. |
MIMO | multi-input multi-output. |
UMDI | U-model based dynamic inverse |
USMC | U-dynamic inversion + U-Sliding Mode Control |
References
- Bouabdallah, S.; Noth, A.; Siegwart, R. PID vs. LQ control techniques applied to an indoor micro quadrotor. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan, 28 September–2 October 2004; pp. 2451–2456. [Google Scholar] [CrossRef]
- Koszewnik, A. The Parrot UAV Controlled by PID Controllers. Acta Mech. Autom. 2014, 8, 65–69. [Google Scholar] [CrossRef]
- Argentim, L.M.; Rezende, W.C.; Santos, P.E.; Aguiar, R.A. PID, LQR and LQR-PID on a quadcopter platform. In Proceedings of the 2013 International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 17–18 May 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Kaplan, M.R.; Eraslan, A.; Beke, A.; Kumbasar, T. Altitude and Position Control of Parrot Mambo Minidrone with PID and Fuzzy PID Controllers. In Proceedings of the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2019; pp. 785–789. [Google Scholar] [CrossRef]
- Cao, G.; Lai, E.M.K.; Alam, F. Gaussian Process Model Predictive Control of an Unmanned Quadrotor. J. Intell. Robot. Syst. 2017, 88, 147–162. [Google Scholar] [CrossRef]
- Madani, T.; Benallegue, A. Backstepping Sliding Mode Control Applied to a Miniature Quadrotor Flying Robot. In Proceedings of the IECON 2006—32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 7–10 November 2006; pp. 700–705. [Google Scholar] [CrossRef]
- Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525. [Google Scholar] [CrossRef]
- Zhu, Q.M.; Zhao, D.; Zhang, J. A general U-block model-based design procedure for nonlinear polynomial control systems. Int. J. Syst. Sci. 2016, 47, 3465–3475. [Google Scholar] [CrossRef]
- Zhu, Q.M.; Liu, L.; Zhang, W.; Li, S. Control of Complex Nonlinear Dynamic Rational Systems. Complexity 2018, 2018, 8953035. [Google Scholar] [CrossRef]
- Li, R.; Zhu, Q.; Kiely, J.; Zhang, W. Algorithms for U-Model-Based Dynamic Inversion (UM-Dynamic Inversion) for Continuous Time Control Systems. Complexity 2020, 2020, 3640210. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, W.; Na, J.; Sun, B. U-model based Control Design Framework for Continuous-Time Systems. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 106–111. [Google Scholar] [CrossRef]
- Slotine, J.J.E.; Li, W.P. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991. [Google Scholar]
- Zhang, L.L.; Deng, C.; Che, W.W.; An, L. Adaptive backstepping control for nonlinear interconnected systems with prespecified-performance-driven output triggering. Automatica 2023, 154, 111063. [Google Scholar] [CrossRef]
- Duan, G.R. High-order fully actuated system approaches: Part I: Models and basic procedure. Int. J. Syst. Sci. 2021, 52, 422–435. [Google Scholar] [CrossRef]
- Echiheb, F.; Bossoufi, B.; Kafazi, I.E.; Bhiri, B.E. A review backstepping control of a DFIG-based wind power system. In Digital Technologies and Applications; Motahhir, S., Bossoufi, B., Eds.; ICDTA 2023, Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2023; Volume 668. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Q.; Mobayen, S.; Yan, H.; Qiu, J.; Narayan, P. U-Model and U-Control Methodology for Nonlinear Dynamic Systems. Complexity 2020, 2020, 1050254. [Google Scholar] [CrossRef]
- Wei, Z.; Li, R.; Zhu, Q. Sliding Mode plus U-Control method for continuous time SISO dynamic systems. Int. J. Cybern. -Cyber-Phys. Syst. 2021, 1, 68–92. [Google Scholar] [CrossRef]
- Jategaonkar, R.V. Flight Vehicle System Identification: A Time-Domain Methodology, 2nd ed.; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2015. [Google Scholar] [CrossRef]
- Li, J.; Li, Y. Dynamic analysis and PID control for a quadrotor. In Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China, 7–10 August 2011; pp. 573–578. [Google Scholar] [CrossRef]
- Zhu, Q.M.; Guo, L. A pole placement controller for non-linear dynamic plants. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2002, 216, 467–476. [Google Scholar] [CrossRef]
- Geng, X.P.; Zhu, Q.M.; Liu, T.; Na, J. U-model based predictive control for nonlinear processes with input delay. J. Process. Control 2019, 75, 156–170. [Google Scholar] [CrossRef]
- Hussain, N.A.A.; Ali, S.S.A.; Ovinis, M.; Arshad, M.; Al-saggaf, U.M. Underactuated coupled nonlinear adaptive control synthesis using U-model for multivariable unmanned marine robotics. IEEE Access 2020, 8, 1851–1965. [Google Scholar] [CrossRef]
- Boubezoula, M.; Hassam, A.; Boutalbi, O. Robust-flatness Controller Design for a Differentially Driven Wheeled Mobile Robot. Int. J. Control Autom. Syst. 2018, 16, 1895–1904. [Google Scholar] [CrossRef]
- Sánchez-Meza, V.; Lozano-Hernández, Y.; Gutiérrez-Frías, O.; Lozada-Castillo, N.; Luviano-Juárez, A. Robust Flat Filtering Control of a Two Degrees of Freedom Helicopter Subject to Tail Rotor Disturbances. Int. J. Appl. Math. Comput. Sci. 2023, 33, 521–535. [Google Scholar] [CrossRef]
- Ogata, K. Modern Control Engineering, 4th ed.; Prentice Hall PTR: Hoboken, NJ, USA, 2001. [Google Scholar]
- Åström, K.J.; Wittenmark, B. Adaptive Control, 2nd ed.; Dover Publications: Mineola, NY, USA, 2008; pp. 92–98. ISBN 9780486462783. [Google Scholar]
- Billings, S. Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio–Temporal Domains; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation; Birkhäuser: New York, NY, USA, 2013; pp. 1–41. [Google Scholar] [CrossRef]
- Li, R.; Zhu, Q.; Nemati, H.; Yue, X.; Narayan, P. Trajectory tracking of a quadrotor using extend state observer based U-model enhanced double sliding mode control. J. Frankl. Inst. 2023, 360, 3520–3544. [Google Scholar] [CrossRef]
- Fliess, M.; Join, C. Model-free control. Int. J. Control 2013, 86, 2228–2252. [Google Scholar] [CrossRef]
- Zhu, Q. Model-free sliding mode enhanced proportional, integral, and derivative (SMPID) control. Axioms 2023, 12, 721. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, R.; Zhang, J. Model-free robust decoupling control of nonlinear nonaffine dynamic systems. Int. J. Syst. Sci. 2023, 54, 2590–2607. [Google Scholar] [CrossRef]
Parameter | Value | Units |
---|---|---|
Thrust Coefficient, | ||
Torque Coefficient, | ||
Air density, | ||
Rotor Radius, R | m | |
Rotor Disk Area, | ||
L | m | |
Rotor inertia, | ||
Inertia moment along X axis, | ||
Inertia moment along Y axis, | ||
Inertia moment along Z axis, |
c | k | ||
---|---|---|---|
Altitude Z (m) | 10 | 1 | 0.1 |
Yaw () (radians) | 10 | 5 | 0.1 |
Roll () (radians) | 10 | 10 | 0.03 |
Pitch () (radians) | 10 | 10 | 0.03 |
PID | UMDI | USMC | |
---|---|---|---|
X (m) | 0.1026 | 0.2749 | 0.1113 |
Y (m) | 0.1589 | 0.2885 | 0.0860 |
Z (m) | 0.0980 | 0.1159 | 0.1244 |
Roll () (radians) | 0.0025 | 0.0304 | 0.0107 |
Pitch () (radians) | 0.0021 | 0.0327 | 0.0105 |
Yaw () (radians) | 0.0543 | 0.0809 | 0.0715 |
PID | USMC | |
---|---|---|
Z (m) | 0.0501 | 0.0138 |
Yaw () (radians) | 0.0284 | 0.0177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lone, A.; Zhu, Q.; Nemati, H.; Mercorelli, P. Dynamic Inversion-Enhanced U-Control of Quadrotor Trajectory Tracking. Drones 2024, 8, 599. https://doi.org/10.3390/drones8100599
Lone A, Zhu Q, Nemati H, Mercorelli P. Dynamic Inversion-Enhanced U-Control of Quadrotor Trajectory Tracking. Drones. 2024; 8(10):599. https://doi.org/10.3390/drones8100599
Chicago/Turabian StyleLone, Ahtisham, Quanmin Zhu, Hamidreza Nemati, and Paolo Mercorelli. 2024. "Dynamic Inversion-Enhanced U-Control of Quadrotor Trajectory Tracking" Drones 8, no. 10: 599. https://doi.org/10.3390/drones8100599
APA StyleLone, A., Zhu, Q., Nemati, H., & Mercorelli, P. (2024). Dynamic Inversion-Enhanced U-Control of Quadrotor Trajectory Tracking. Drones, 8(10), 599. https://doi.org/10.3390/drones8100599