Visual Servoing for Aerial Vegetation Sampling Systems
Abstract
:1. Introduction
2. Detection and Feature Extraction
3. System Modeling
4. Visual Servoing
4.1. Image-Based Control
4.2. Dynamic Control
4.3. Learning Based Control
5. Simulation Results
5.1. Gripping from the Top
5.2. Gripping from Below
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASM | Adaptive Sliding Mode |
ASMC | Adaptive Sliding Mode Control |
CNN | Convolutional Neural Network |
DOF | Degrees of Freedom |
DRL | Deep Reinforcement Learning |
ELM | Extreme Learning Machine |
IBVS | Image-based Visual Servoing |
KD | Knowledge Distillation |
MLP | Multilayer Perceptron |
MPC | Model Predictive Control |
MSE | Mean Squared Error |
NDOBC | Disturbance Observer-Based Control |
PBVS | Position-based Visual Servoing |
RL | Reinforcement Learning |
UAV | Unpiloted Aerial Vehicles |
References
- Charron, G.; Robichaud-Courteau, T.; La Vigne, H.; Weintraub, S.; Hill, A.; Justice, D.; Bélanger, N.; Lussier Desbiens, A. The DeLeaves: A UAV device for efficient tree canopy sampling. J. Unmanned Veh. Syst. 2020, 8, 245–264. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, Y.; Pang, J.; Guo, Q.; Guan, J.; Gu, J. Mini-drone assisted tree canopy sampling: A low-cost and high-precision solution. Front. Plant Sci. 2023, 14, 1272418. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Deng, X.; Lan, Y.; Liu, C.; Qing, J. Fruit tree canopy segmentation from UAV orthophoto maps based on a lightweight improved U-Net. Comput. Electron. Agric. 2024, 217, 108538. [Google Scholar] [CrossRef]
- Kutia, J.R.; Stol, K.A.; Xu, W. Canopy sampling using an aerial manipulator: A preliminary study. In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, Denver, CO, USA, 9–12 June 2015; pp. 477–484. [Google Scholar]
- Kutia, J.R.; Stol, K.A.; Xu, W. Initial flight experiments of a canopy sampling aerial manipulator. In Proceedings of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; pp. 1359–1365. [Google Scholar] [CrossRef]
- Kutia, J.R.; Stol, K.A.; Xu, W. Aerial manipulator interactions with trees for canopy sampling. IEEE/ASME Trans. Mechatron. 2018, 23, 1740–1749. [Google Scholar] [CrossRef]
- Schweiger, A.K.; Lussier Desbiens, A.; Charron, G.; La Vigne, H.; Laliberté, E. Foliar sampling with an unmanned aerial system (UAS) reveals spectral and functional trait differences within tree crowns. Can. J. For. Res. 2020, 50, 966–974. [Google Scholar] [CrossRef]
- La Vigne, H.; Charron, G.; Hovington, S.; Desbiens, A.L. Assisted canopy sampling using unmanned aerial vehicles (UAVs). In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, Athens, Greece, 15–18 June 2021; pp. 1642–1647. [Google Scholar]
- Giannico, V.; Lafortezza, R.; John, R.; Sanesi, G.; Pesola, L.; Chen, J. Estimating Stand Volume and Above-Ground Biomass of Urban Forests Using LiDAR. Remote Sens. 2016, 8, 339. [Google Scholar] [CrossRef]
- Garofalo, S.P.; Giannico, V.; Lorente, B.; García, A.J.G.; Vivaldi, G.A.; Thameur, A.; Salcedo, F.P. Predicting carob tree physiological parameters under different irrigation systems using Random Forest and Planet satellite images. Front. Plant Sci. 2024, 15, 1302435. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, B.; Xiang, C.; Fan, W.; Ai, T. Flight and interaction control of an innovative ducted fan aerial manipulator. Sensors 2020, 20, 3019. [Google Scholar] [CrossRef]
- Khalesi, F.; Ahmed, I.; Daponte, P.; Picariello, F.; De Vito, L.; Tudosa, I. The Uncertainty Assessment by the Monte Carlo Analysis of NDVI Measurements Based on Multispectral UAV Imagery. Sensors 2024, 24, 2696. [Google Scholar] [CrossRef]
- Samadikhoshkho, Z.; Lipsett, M. Decoupled control design of aerial manipulation systems for vegetation sampling application. Drones 2023, 7, 110. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Z.; Zou, Y.; Cao, M. Visual Object Tracking and Servoing Control of a Nano-Scale Quadrotor: System, Algorithms, and Experiments. IEEE CAA J. Autom. Sin. 2021, 8, 344–360. [Google Scholar] [CrossRef]
- Shi, L.; Li, B.; Shi, W. Vision-based UAV adaptive tracking control for moving targets with velocity observation. Trans. Inst. Meas. Control. 2024, 46, 01423312241228886. [Google Scholar] [CrossRef]
- Chen, H.; Xia, K. Robust Image-Based Visual Servo Target Tracking of UAV with Depth Camera. In Proceedings of the 2024 IEEE International Conference on Industrial Technology (ICIT), IEEE, Bristol, UK, 25–27 March 2024; pp. 1–6. [Google Scholar]
- Wang, G.; Qin, J.; Liu, Q.; Ma, Q.; Zhang, C. Image-based visual servoing of quadrotors to arbitrary flight targets. IEEE Robot. Autom. Lett. 2023, 8, 2022–2029. [Google Scholar] [CrossRef]
- Yang, J.; Huo, X.; Xiao, B.; Fu, Z.; Wu, C.; Wei, Y. Visual servo control of unmanned aerial vehicles: An object tracking-based approach. In Proceedings of the 2017 29th Chinese Control And Decision Conference (CCDC), IEEE, Chongqing, China, 28–30 May 2017; pp. 3524–3528. [Google Scholar]
- Luo, B.; Chen, H.; Quan, F.; Zhang, S.; Liu, Y. Natural feature-based visual servoing for grasping target with an aerial manipulator. J. Bionic Eng. 2020, 17, 215–228. [Google Scholar] [CrossRef]
- Samadikhoshkho, Z.; Ghorbani, S.; Janabi-Sharifi, F. Vision-based reduced-order adaptive control of aerial continuum manipulation systems. Aerosp. Sci. Technol. 2022, 121, 107322. [Google Scholar] [CrossRef]
- Molina, M.; Frau, P.; Maravall, D. A collaborative approach for surface inspection using aerial robots and computer vision. Sensors 2018, 18, 893. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Dworak, V.; ShokrianZeini, M.; Navas, E.; Käthner, J.; Höfner, N.; Weltzien, C. An Overview of Visual Servoing for Robotic Manipulators in Digital Agriculture; Gesellschaft für Informatik e.V.: Hamburg, Germany, 2023. [Google Scholar]
- Häni, N.; Isler, V. Visual servoing in orchard settings. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Daejeon, Republic of Korea, 9–14 October 2016; pp. 2946–2953. [Google Scholar]
- Wang, C.L.; Lu, C.Y.; Li, H.W.; Wei, Z.C.; Cheng, X.P.; Mao, Y.J.; Hu, H.N.; Wang, C. Research progress on visual navigation technology of agricultural machinery. Int. Agric. Eng. J. 2019, 28. [Google Scholar]
- Ahmadi, A.; Halstead, M.; McCool, C. Towards autonomous visual navigation in arable fields. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Kyoto, Japan, 23–27 October 2022; pp. 6585–6592. [Google Scholar]
- Barth, R.; Hemming, J.; van Henten, E.J. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation. Biosyst. Eng. 2016, 146, 71–84. [Google Scholar]
- Busch, C.A.M.; Stol, K.A.; van der Mark, W. Dynamic tree branch tracking for aerial canopy sampling using stereo vision. Comput. Electron. Agric. 2021, 182, 106007. [Google Scholar] [CrossRef]
- Cong, V.D.; Hanh, L.D. A review and performance comparison of visual servoing controls. Int. J. Intell. Robot. Appl. 2023, 7, 65–90. [Google Scholar]
- Shi, H.; Wu, H.; Xu, C.; Zhu, J.; Hwang, M.; Hwang, K.S. Adaptive image-based visual servoing using reinforcement learning with fuzzy state coding. IEEE Trans. Fuzzy Syst. 2020, 28, 3244–3255. [Google Scholar] [CrossRef]
- Saxena, A.; Pandya, H.; Kumar, G.; Gaud, A.; Krishna, K.M. Exploring convolutional networks for end-to-end visual servoing. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Singapore, 29 May–3 June 2017; pp. 3817–3823. [Google Scholar]
- Fu, G.; Chu, H.; Liu, L.; Fang, L.; Zhu, X. Deep reinforcement learning for the visual servoing control of uavs with fov constraint. Drones 2023, 7, 375. [Google Scholar] [CrossRef]
- Shi, H.; Li, X.; Hwang, K.S.; Pan, W.; Xu, G. Decoupled visual servoing with fuzzy Q-learning. IEEE Trans. Ind. Inform. 2016, 14, 241–252. [Google Scholar] [CrossRef]
- Kang, M.; Chen, H.; Dong, J. Adaptive visual servoing with an uncalibrated camera using extreme learning machine and Q-leaning. Neurocomputing 2020, 402, 384–394. [Google Scholar] [CrossRef]
- Chen, J.; Hua, C.; Guan, X. Image based fixed time visual servoing control for the quadrotor UAV. IET Control. Theory Appl. 2019, 13, 3117–3123. [Google Scholar] [CrossRef]
- Jo, K.; Chwa, D. Robust Hybrid Visual Servoing of Omnidirectional Mobile Manipulator With Kinematic Uncertainties Using a Single Camera. IEEE Trans. Cybern. 2023, 54, 2824–2837. [Google Scholar] [CrossRef]
- Zhang, L.; Pei, J.; Bai, K.; Chen, Z.; Zhang, J. A Closed-Loop Multi-perspective Visual Servoing Approach with Reinforcement Learning. In Proceedings of the 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, Samui, Thailand, 4–9 December 2023; pp. 1–7. [Google Scholar]
- Jin, Z.; Wu, J.; Liu, A.; Zhang, W.A.; Yu, L. Policy-based deep reinforcement learning for visual servoing control of mobile robots with visibility constraints. IEEE Trans. Ind. Electron. 2021, 69, 1898–1908. [Google Scholar] [CrossRef]
- He, Y.; Gao, J.; Li, H.; Chen, Y.; Li, Y. Hierarchical Reinforcement Learning-Based End-to-End Visual Servoing With Smooth Subgoals. IEEE Trans. Ind. Electron. 2023, 71, 11009–11018. [Google Scholar] [CrossRef]
- Copot, C.; Ionescu, C.M.; Muresan, C.I.; Copot, C.; Ionescu, C.M.; Muresan, C.I. Image Feature Extraction and Evaluation. Image-Based and Fractional-Order Control for Mechatronic Systems: Theory and Applications with MATLAB®; Springer: Berlin/Heidelberg, Germany, 2020; pp. 29–61. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- García-Aracil, N.; Malis, E.; Aracil-Santonja, R.; Pérez-Vidal, C. Continuous visual servoing despite the changes of visibility in image features. IEEE Trans. Robot. 2005, 21, 1214–1220. [Google Scholar] [CrossRef]
- Ghasemi, A.; Li, P.; Xie, W.F.; Tian, W. Enhanced switch image-based visual servoing dealing with featuresloss. Electronics 2019, 8, 903. [Google Scholar] [CrossRef]
- Chesi, G. Visual servoing path planning via homogeneous forms and LMI optimizations. IEEE Trans. Robot. 2009, 25, 281–291. [Google Scholar] [CrossRef]
- Kazemi, M.; Gupta, K.; Mehrandezh, M. Global path planning for robust visual servoing in complex environments. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, IEEE, Kobe, Japan, 12–17 May 2009; pp. 326–332. [Google Scholar]
- Allibert, G.; Courtial, E.; Chaumette, F. Predictive control for constrained image-based visual servoing. IEEE Trans. Robot. 2010, 26, 933–939. [Google Scholar] [CrossRef]
- Heshmati-Alamdari, S.; Karavas, G.K.; Eqtami, A.; Drossakis, M.; Kyriakopoulos, K.J. Robustness analysis of model predictive control for constrained image-based visual servoing. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Hong Kong, China, 31 May-7 June 2014; pp. 4469–4474. [Google Scholar]
- Hajiloo, A.; Keshmiri, M.; Xie, W.F.; Wang, T.T. Robust online model predictive control for a constrained image-based visual servoing. IEEE Trans. Ind. Electron. 2015, 63, 2242–2250. [Google Scholar]
- Bateux, Q.; Marchand, E. Direct visual servoing based on multiple intensity histograms. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Seattle, WA, USA, 26–30 May 2015; pp. 6019–6024. [Google Scholar]
- Sampedro, C.; Rodriguez-Ramos, A.; Gil, I.; Mejias, L.; Campoy, P. Image-based visual servoing controller for multirotor aerial robots using deep reinforcement learning. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Madrid, Spain, 1–5 October 2018; pp. 979–986. [Google Scholar]
- Zhang, W.; Song, K.; Rong, X.; Li, Y. Coarse-to-fine UAV target tracking with deep reinforcement learning. IEEE Trans. Autom. Sci. Eng. 2018, 16, 1522–1530. [Google Scholar] [CrossRef]
- Florence, P.; Manuelli, L.; Tedrake, R. Self-supervised correspondence in visuomotor policy learning. IEEE Robot. Autom. Lett. 2019, 5, 492–499. [Google Scholar] [CrossRef]
- Fei, H.; Wang, Z.; Kennedy, A. Robust Reinforcement Learning Based Visual Servoing with Convolutional Features. IFAC-PapersOnLine 2023, 56, 9781–9786. [Google Scholar] [CrossRef]
- Chen, B.; Sax, A.; Lewis, G.; Armeni, I.; Savarese, S.; Zamir, A.; Malik, J.; Pinto, L. Robust policies via mid-level visual representations: An experimental study in manipulation and navigation. arXiv 2020, arXiv:2011.06698. [Google Scholar]
- Condat, R.; Vasseur, P.; Allibert, G. Focusing on Object Extremities for Tree Instance Segmentation in Forest Environments. IEEE Robot. Autom. Lett. 2024, 9, 5480–5487. [Google Scholar] [CrossRef]
- Silva, R.; Junior, J.M.; Almeida, L.; Gonçalves, D.; Zamboni, P.; Fernandes, V.; Silva, J.; Matsubara, E.; Batista, E.; Ma, L.; et al. Line-based deep learning method for tree branch detection from digital images. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102759. [Google Scholar] [CrossRef]
- Samadikhoshkho, Z.; Ghorbani, S.; Janabi-Sharifi, F.; Zareinia, K. Nonlinear control of aerial manipulation systems. Aerosp. Sci. Technol. 2020, 104, 105945. [Google Scholar] [CrossRef]
- Samadikhoshkho, Z.; Ghorbani, S.; Janabi-Sharifi, F. Coupled dynamic modeling and control of aerial continuum manipulation systems. Appl. Sci. 2021, 11, 9108. [Google Scholar] [CrossRef]
- Ghorbani, S.; Samadikhoshkho, Z.; Janabi-Sharifi, F. Dual-arm aerial continuum manipulation systems: Modeling, pre-grasp planning, and control. Nonlinear Dyn. 2023, 111, 7339–7355. [Google Scholar] [CrossRef]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Samadi Khoshkho, M.; Samadikhoshkho, Z.; Lipsett, M.G. Distilled neural state-dependent Riccati equation feedback controller for dynamic control of a cable-driven continuum robot. Int. J. Adv. Robot. Syst. 2023, 20, 17298806231174737. [Google Scholar] [CrossRef]
Method | Key Features | Strengths | Limitations |
---|---|---|---|
Learning-Based Visual Servoing | Data-driven techniques for decision-making in unstructured environments. | Robust operation in dynamic settings; learns complex patterns from data. | Requires large training datasets; may face issues with generalization across environments. |
End-to-End Visual Servoing | Directly maps input images to control commands without feature extraction. | Bypasses feature extraction; potentially faster processing. | May struggle with complex environments; relies on high-quality training data. |
Hybrid Approaches | Combines IBVS and PBVS. | Leverages strengths of both methodologies; adaptable to varying conditions. | Complexity in integration; poor generality; may require extensive tuning. |
Position-Based Visual Servoing (PBVS) | Uses 3D pose information. | Effective for tasks needing precise positioning. | Sensitive to camera calibration. |
Image-Based Visual Servoing (IBVS) | Operates on image features to minimize error in the image plane. | Quick adjustments based on visual feedback; can work with varying object appearances. | Local minima and singularities; can require more features for reliable control. |
Reinforcement Learning Approaches | Utilizes RL to dynamically map visual inputs. | Adaptable to changing environments; learns from interaction with the environment. | Large training data requirement; can lead to unsmooth actions and local minima issues. |
Number of Neurons | Activation | |
---|---|---|
Hidden 1 | 25 | PReLU |
Hidden 2 | 25 | PReLU |
Hidden 3 () | 50 | — |
Hidden 4 | 25 | PReLU |
Hidden 5 | 25 | PReLU |
Output | 1 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samadikhoshkho, Z.; Lipsett, M.G. Visual Servoing for Aerial Vegetation Sampling Systems. Drones 2024, 8, 605. https://doi.org/10.3390/drones8110605
Samadikhoshkho Z, Lipsett MG. Visual Servoing for Aerial Vegetation Sampling Systems. Drones. 2024; 8(11):605. https://doi.org/10.3390/drones8110605
Chicago/Turabian StyleSamadikhoshkho, Zahra, and Michael G. Lipsett. 2024. "Visual Servoing for Aerial Vegetation Sampling Systems" Drones 8, no. 11: 605. https://doi.org/10.3390/drones8110605
APA StyleSamadikhoshkho, Z., & Lipsett, M. G. (2024). Visual Servoing for Aerial Vegetation Sampling Systems. Drones, 8(11), 605. https://doi.org/10.3390/drones8110605