Effects of Digital Elevation Model Resolution on Unmanned Aerial Vehicle-Based Topographic Change Detection in Human-Altered Landscapes
Abstract
:1. Introduction
2. Methodology
2.1. Overview
2.2. Study Areas
2.3. Topographic Data Collection
2.4. Generation of a Series of DEMs
2.5. Topographic Change Detection
2.6. Error Assessment
2.7. Influencing Factor Analysis
3. Results
3.1. Topographic Changes
3.2. The Resolution Effects on DoD Errors
3.2.1. The Effects on Magnitude of Errors
3.2.2. The Effects on Spatial Structure of Errors
3.3. The Resolution Effects on Volume Errors
3.4. The Influencing Factors
4. Discussion
4.1. The Effects of DEM Resolution in UAV-Based Change Detection
4.2. The UAV-Based DEM Generation Methods
4.3. The Characteristics of Topographic Changes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, W.; Zheng, G.; Antoniazza, G.; Zhao, F.; Chen, K.; Lu, W.; Lane, S.N. Improving UAV-SfM photogrammetry for modelling high-relief terrain: Image collection strategies and ground control quantity. Earth Surf. Process. Landf. 2023, 48, 2884–2899. [Google Scholar] [CrossRef]
- Capolupo, A. Improving the Accuracy of Global DEM of Differences (DoD) in Google Earth Engine for 3-D Change Detection Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12332–12347. [Google Scholar] [CrossRef]
- Zhang, P.; Zheng, F.; Chen, J.; Wang, B.; Ding, X. Application of high-precision GPS to dynamic monitoring gully erosion processes. Trop. Geogr. 2009, 29, 398–406. [Google Scholar]
- Xiong, L.; Li, S.; Tang, G.; Strobl, J. Geomorphometry and terrain analysis: Data, methods, platforms and applications. Earth-Sci. Rev. 2022, 233, 104191. [Google Scholar] [CrossRef]
- Dai, W.; Xiong, L.; Antoniazza, G.; Tang, G.; Lane, S.N. Quantifying the spatial distribution of sediment transport in an experimental gully system using the morphological method. Earth Surf. Process. Landf. 2021, 46, 1188–1208. [Google Scholar] [CrossRef]
- Collins, B.D.; Minasian, D.L.; Kayen, R. Topographic Change Detection at Select Archeological Sites in Grand Canyon National Park, Arizona, 2006–2007; US Geological Survey: Reston, VA, USA, 2009; ISSN 2328-0328. [Google Scholar]
- Lane, S.N.; Westaway, R.M.; Murray Hicks, D. Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surf. Process. Landf. 2003, 28, 249–271. [Google Scholar] [CrossRef]
- Hsiao, K.; Liu, J.; Yu, M.; Tseng, Y. Change detection of landslide terrains using ground-based LiDAR data. In Proceedings of the XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004; Commission VII, WG. p. 5. [Google Scholar]
- Antoniazza, G.; Bakker, M.; Lane, S.N. Revisiting the morphological method in two-dimensions to quantify bed-material transport in braided rivers. Earth Surf. Process. Landf. 2019, 44, 2251–2267. [Google Scholar] [CrossRef]
- Bakker, M.; Antoniazza, G.; Odermatt, E.; Lane, S.N. Morphological Response of an Alpine Braided Reach to Sediment-Laden Flow Events. J. Geophys. Res. Earth Surf. 2019, 124, 1310–1328. [Google Scholar] [CrossRef]
- Gao, Y.; Fan, L.C.; Deng, J.; Zhao, S.; Dai, W.; Zhu, J.; He, Z.; Yang, Z.; Lane, S.N. Primary and potential secondary risks of landslide outburst floods. Nat. Hazards 2023, 116, 2501–2527. [Google Scholar] [CrossRef]
- Xiong, L.; Tang, G.; Yang, X.; Li, F. Geomorphology-oriented digital terrain analysis: Progress and perspectives. J. Geogr. Sci. 2021, 31, 456–476. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Prinsen, G.; Bouaziz, L.; Lin, Y.J.; Dahm, R. An Investigation of DEM Resolution Influence on Flood Inundation Simulation. Procedia Eng. 2016, 154, 826–834. [Google Scholar] [CrossRef]
- Dai, W.; Yang, X.; Na, J.; Li, J.; Brus, D.; Xiong, L.; Tang, G.; Huang, X. Effects of DEM resolution on the accuracy of gully maps in loess hilly areas. Catena 2019, 177, 114–125. [Google Scholar] [CrossRef]
- Kienzle, S. The effect of DEM raster resolution on first order, second order and compound terrain derivatives. Trans. GIS 2004, 8, 83–111. [Google Scholar] [CrossRef]
- Grohmann, C.H. Effects of spatial resolution on slope and aspect derivation for regional-scale analysis. Comput. Geosci. 2015, 77, 111–117. [Google Scholar] [CrossRef]
- Sørensen, R.; Seibert, J. Effects of DEM resolution on the calculation of topographical indices: TWI and its components. J. Hydrol. 2007, 347, 79–89. [Google Scholar] [CrossRef]
- Saksena, S.; Merwade, V. Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping. J. Hydrol. 2015, 530, 180–194. [Google Scholar] [CrossRef]
- Hengl, T. Finding the right pixel size. Comput. Geosci. 2006, 32, 1283–1298. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Q.; Li, R.; Liu, Q.; Moore, D.; He, P.; Ritsema, C.J.; Geissen, V. Extension of a GIS procedure for calculating the RUSLE equation LS factor. Comput. Geosci. 2013, 52, 177–188. [Google Scholar] [CrossRef]
- Tan, M.L.; Ramli, H.P.; Tam, T.H. Effect of DEM Resolution, Source, Resampling Technique and Area Threshold on SWAT Outputs. Water Resour. Manag. 2018, 32, 4591–4606. [Google Scholar] [CrossRef]
- Zhang, J.X.; Chang, K.T.; Wu, J.Q. Effects of DEM resolution and source on soil erosion modelling: A case study using the WEPP model. Int. J. Geogr. Inf. Sci. 2008, 22, 925–942. [Google Scholar] [CrossRef]
- Xiong, L.-Y.; Li, S.-J.; Hu, G.-H.; Wang, K.; Chen, M.; Zhu, A.-X.; Tang, G.-A. Past rainfall-driven erosion on the Chinese loess plateau inferred from archaeological evidence from Wucheng City, Shanxi. Commun. Earth Environ. 2023, 4, 4. [Google Scholar] [CrossRef]
- Li, S.; Dai, W.; Xiong, L.; Tang, G. Uncertainty of the morphological feature expression of loess erosional gully affected by DEM resolution. J. Geo-Inf. Sci 2020, 22, 338–350. [Google Scholar]
- Bangen, S.G.; Wheaton, J.M.; Bouwes, N.; Bouwes, B.; Jordan, C. A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers. Geomorphology 2014, 206, 343–361. [Google Scholar] [CrossRef]
- Kasprak, A.; Bransky, N.D.; Sankey, J.B.; Caster, J.; Sankey, T.T. The effects of topographic surveying technique and data resolution on the detection and interpretation of geomorphic change. Geomorphology 2019, 333, 1–15. [Google Scholar] [CrossRef]
- Sankey, J.B.; Kasprak, A.; Chojnacki, M.; Titus, T.N.; Caster, J.; DeBenedetto, G.P. Can we accurately estimate sediment budgets on Mars? Earth Planet. Sci. Lett. 2022, 593, 117682. [Google Scholar] [CrossRef]
- Kulkarni, S.R.; Posner, S.E. Rates of convergence of nearest neighbor estimation under arbitrary sampling. IEEE Trans. Inf. Theory 1995, 41, 1028–1039. [Google Scholar] [CrossRef]
- Gribbon, K.T.; Bailey, D.G. A novel approach to real-time bilinear interpolation. In Proceedings of the DELTA 2004, Second IEEE International Workshop on Electronic Design, Test and Applications, Perth, Australia, 28–30 January 2004; pp. 126–131. [Google Scholar]
- Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef]
- Tao, Y.; Tian, L.; Wang, C.; Dai, W.; Xu, Y. A fine construction method of urban road DEM considering road morphological characteristics. Sci. Rep. 2022, 12, 14958. [Google Scholar] [CrossRef]
- Dixon, B.; Earls, J. Resample or not?! Effects of resolution of DEMs in watershed modeling. Hydrol. Process. Int. J. 2009, 23, 1714–1724. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Merz, J.; Pasternack, G.B.; Sear, D.; Vericat, D. Linking geomorphic changes to salmonid habitat at a scale relevant to fish. River Res. Appl. 2010, 26, 469–486. [Google Scholar] [CrossRef]
- Erdbrügger, J.; van Meerveld, I.; Bishop, K.; Seibert, J. Effect of DEM-smoothing and-aggregation on topographically-based flow directions and catchment boundaries. J. Hydrol. 2021, 602, 126717. [Google Scholar] [CrossRef]
- Korzeniowska, K.; Łącka, M. Generating DEM from LiDAR data–comparison of available software tools. Arch. Fotogram. Kartogr. I Teledetekcji 2011, 22, 271–284. [Google Scholar]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Thompson, J.A.; Bell, J.C.; Butler, C.A. Digital elevation model resolution: Effects on terrain attribute calculation and quantitative soil-landscape modeling. Geoderma 2001, 100, 67–89. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef]
- Bangen, S.; Hensleigh, J.; McHugh, P.; Wheaton, J. Error modeling of DEMs from topographic surveys of rivers using fuzzy inference systems. Water Resour. Res. 2016, 52, 1176–1193. [Google Scholar] [CrossRef]
- He, Y.; Lei, S.; Dai, W.; Chen, X.; Wang, B.; Sheng, Y.; Lin, H. DEM-based topographic change detection considering the spatial distribution of errors. Geo-Spat. Inf. Sci. 2024, 1–14. [Google Scholar] [CrossRef]
- Bater, C.W.; Coops, N.C. Evaluating error associated with lidar-derived DEM interpolation. Comput. Geosci. 2009, 35, 289–300. [Google Scholar] [CrossRef]
- Fereshtehpour, M.; Karamouz, M. DEM resolution effects on coastal flood vulnerability assessment: Deterministic and probabilistic approach. Water Resour. Res. 2018, 54, 4965–4982. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2009, 32, 136–156. [Google Scholar] [CrossRef]
- Dai, W.; Qian, W.; Liu, A.; Wang, C.; Yang, X.; Hu, G.; Tang, G. Monitoring and modeling sediment transport in space in small loess catchments using UAV-SfM photogrammetry. Catena 2022, 214, 106244. [Google Scholar] [CrossRef]
- Anderson, S.W. Uncertainty in quantitative analyses of topographic change: Error propagation and the role of thresholding. Earth Surf. Process. Landf. 2019, 44, 1015–1033. [Google Scholar] [CrossRef]
- Le Coz, M.; Delclaux, F.; Genthon, P.; Favreau, G. Assessment of Digital Elevation Model (DEM) aggregation methods for hydrological modeling: Lake Chad basin, Africa. Comput. Geosci. 2009, 35, 1661–1670. [Google Scholar] [CrossRef]
- Shi, W.; Wang, B.; Tian, Y. Accuracy analysis of digital elevation model relating to spatial resolution and terrain slope by bilinear interpolation. Math. Geosci. 2014, 46, 445–481. [Google Scholar] [CrossRef]
- Wang, B.; Shi, W.; Liu, E. Robust methods for assessing the accuracy of linear interpolated DEM. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 198–206. [Google Scholar] [CrossRef]
- Rees, W.G. The accuracy of digital elevation models interpolated to higher resolutions. Int. J. Remote Sens. 2000, 21, 7–20. [Google Scholar] [CrossRef]
- Wu, S.; Li, J.; Huang, G. A study on DEM-derived primary topographic attributes for hydrologic applications: Sensitivity to elevation data resolution. Appl. Geogr. 2008, 28, 210–223. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, Á.; Conoscenti, C.; Angileri, S.E.; Rotigliano, E.; Schnabel, S. Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: Advantages and limitations. Nat. Hazards 2015, 79, 291–314. [Google Scholar] [CrossRef]
- Na, J.; Yang, X.; Dai, W.; Li, M.; Xiong, L.; Zhu, R.; Tang, G. Bidirectional DEM relief shading method for extraction of gully shoulder line in loess tableland area. Phys. Geogr. 2018, 39, 368–386. [Google Scholar] [CrossRef]
- Yang, X.; Dai, W.; Tang, G.; Li, M. Deriving Ephemeral Gullies from VHR Image in Loess Hilly Areas through Directional Edge Detection. ISPRS Int. J. Geo-Inf. 2017, 6, 371. [Google Scholar] [CrossRef]
Study Area | Name | Survey Period | Location | Area (km2) | Topographic Changes |
---|---|---|---|---|---|
T1 | Qiaogou | 2019–2021 | 37°34′2″ N 110°16′48″ E | 0.15 | New terraces were constructed on their hillslope in 2020 |
T2 | Tianshan | 2017–2019 | 85°3′48″ N 43°18′60″ E | 0.15 | Significant terrain changes in downward excavation and partial accumulation |
Study Area | Period | Flight Height (m) | Number of Images | GSD (m) | Mean Error (m) | Standard Deviation Error (m) |
---|---|---|---|---|---|---|
T1 | 2019 | 100 | ~580 | 0.027 | 0.001 | 0.035 |
2021 | 100 | ~580 | 0.027 | −0.001 | 0.041 | |
T2 | 2017 | 120 | ~470 | 0.038 | 0.001 | 0.053 |
2019 | 120 | ~470 | 0.038 | 0.001 | 0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, W.; Hu, J.; Wang, B.; Fan, M.; Zhou, Y.; Zhang, M. Effects of Digital Elevation Model Resolution on Unmanned Aerial Vehicle-Based Topographic Change Detection in Human-Altered Landscapes. Drones 2024, 8, 610. https://doi.org/10.3390/drones8110610
Dai W, Hu J, Wang B, Fan M, Zhou Y, Zhang M. Effects of Digital Elevation Model Resolution on Unmanned Aerial Vehicle-Based Topographic Change Detection in Human-Altered Landscapes. Drones. 2024; 8(11):610. https://doi.org/10.3390/drones8110610
Chicago/Turabian StyleDai, Wen, Jiahui Hu, Bo Wang, Mengtian Fan, Yiyang Zhou, and Mengmeng Zhang. 2024. "Effects of Digital Elevation Model Resolution on Unmanned Aerial Vehicle-Based Topographic Change Detection in Human-Altered Landscapes" Drones 8, no. 11: 610. https://doi.org/10.3390/drones8110610
APA StyleDai, W., Hu, J., Wang, B., Fan, M., Zhou, Y., & Zhang, M. (2024). Effects of Digital Elevation Model Resolution on Unmanned Aerial Vehicle-Based Topographic Change Detection in Human-Altered Landscapes. Drones, 8(11), 610. https://doi.org/10.3390/drones8110610