An Algorithm for Affordable Vision-Based GNSS-Denied Strapdown Celestial Navigation
Abstract
:1. Introduction
2. Theory
2.1. Star Observation
2.2. Position Estimation
3. Methods
3.1. Star Detection and Tracking
3.2. Experimental Configuration
3.3. Position Estimation
Algorithm 1 Position-RANSAC |
for in do end for for
do 3 randomly selected indexes build and using and for all remaining indexes k do if then += 1 += else += 1 end if end for if then if then end if end if end for return
|
Algorithm 2 Kabsch |
Translate vectors in and such that centroid is at origin Compute the matrix Compute the singular value decomposition such that Set diagonal elements through to = 1. if
then = 1 else = −1 end if Compute the rotation matrix |
4. Results
4.1. Position Estimation
4.2. Estimation Accuracy
4.3. Initial Conditions
4.4. Simulation of Wind Effects
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gatty, H. Aerial Navigation—Methods and Equipment. SAE Trans. 1932, 27, 153–170. [Google Scholar] [CrossRef]
- Pappalardi, F.; Dunham, S.; LeBlang, M.; Jones, T.; Bangert, J.; Kaplan, G. Alternatives to GPS. In Proceedings of the MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295), Honolulu, HI, USA, 5–8 November 2001; IEEE: New York, NY, USA, 2001; Volume 3, pp. 1452–1459. [Google Scholar] [CrossRef]
- Ali, J.; Zhang, C.; Fang, J. An algorithm for astro-inertial navigation using CCD star sensors. Aerosp. Sci. Technol. 2006, 10, 449–454. [Google Scholar] [CrossRef]
- Ting, F.; Xiaoming, H. Inertial/celestial integrated navigation algorithm for long endurance unmanned aerial vehicle. Acta Tech. CSAV (Ceskoslov. Akad. Ved.) 2017, 62, 205–217. [Google Scholar]
- Levine, S.; Dennis, R.; Bachman, K.L. Strapdown Astro-Inertial Navigation Utilizing the Optical Wide-angle Lens Startracker. Navigation 1990, 37, 347–362. [Google Scholar] [CrossRef]
- Chen, H.; Gao, H.; Zhang, H. Integrated navigation approaches of vehicle aided by the strapdown celestial angles. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420932008. [Google Scholar] [CrossRef]
- Gai, E.; Daly, K.; Harrison, J.; Lemos, L. Star-sensor-based satellite attitude/attitude rate estimator. J. Guid. Control Dyn. 1985, 8, 560–565. [Google Scholar] [CrossRef]
- Wang, J.; Chun, J. Attitude determination using a single star sensor and a star density table. J. Guid. Control Dyn. 2006, 29, 1329–1338. [Google Scholar] [CrossRef]
- Mao, X.; Du, X.; Fang, H. Precise attitude determination strategy for spacecraft based on information fusion of attitude sensors: Gyros/GPS/Star-sensor. Int. J. Aeronaut. Space Sci. 2013, 14, 91–98. [Google Scholar] [CrossRef]
- Guo, C.; Tong, X.; Liu, S.; Lu, X.; Chen, P.; Jin, Y.; Xie, H. High-precision attitude estimation method of star sensors and gyro based on complementary filter and unscented Kalman filter. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 49–53. [Google Scholar] [CrossRef]
- De Almeida Martins, F.; Carrara, V.; d’Amore, R. Positionless Attitude Estimation with Integrated Star and Horizon Sensors. IEEE Access 2023, 12, 2340–2348. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, H.; Wang, W.; Xu, Y. SIMU/Triple star sensors integrated navigation method of HALE UAV based on atmospheric refraction correction. J. Navig. 2022, 75, 704–726. [Google Scholar] [CrossRef]
- Teague, S.; Chahl, J. Imagery synthesis for drone celestial navigation simulation. Drones 2022, 6, 207. [Google Scholar] [CrossRef]
- Teague, S.; Chahl, J. Strapdown Celestial Attitude Estimation from Long Exposure Images for UAV Navigation. Drones 2023, 7, 52. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.; Tong, S.; Wang, R.; Li, C.; Tian, Y.; He, D.; Jiang, D.; Pu, J. Celestial Navigation and Positioning Method Based on Super-Large Field of View Star Sensors. In Proceedings of the China Satellite Navigation Conference, Jinan, China, 22–24 May 2024; Springer: Berlin/Heidelberg, Germany, 2023; pp. 475–487. [Google Scholar] [CrossRef]
- Van Allen, J.A. Basic principles of celestial navigation. Am. J. Phys. 2004, 72, 1418–1424. [Google Scholar] [CrossRef]
- Liebe, C.C. Accuracy performance of star trackers-a tutorial. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 587–599. [Google Scholar] [CrossRef]
- Delabie, T.; Schutter, J.D.; Vandenbussche, B. An accurate and efficient gaussian fit centroiding algorithm for star trackers. J. Astronaut. Sci. 2014, 61, 60–84. [Google Scholar] [CrossRef]
- Teague, S.; Chahl, J. Bootstrap geometric ground calibration method for wide angle star sensors. JOSA A 2024, 41, 654–663. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, G.; Jiang, J. Star identification algorithm based on log-polar transform. J. Aerosp. Comput. Inf. Commun. 2009, 6, 483–490. [Google Scholar] [CrossRef]
- Lawrence, J.; Bernal, J.; Witzgall, C. A purely algebraic justification of the Kabsch-Umeyama algorithm. J. Res. Natl. Inst. Stand. Technol. 2019, 124, 1. [Google Scholar] [CrossRef]
- Gebre-Egziabher, D.; Powell, J.; Enge, P. Design and performance analysis of a low-cost aided dead reckoning navigation system. Gyroscopy Navig. 2001, 4, 83–92. [Google Scholar]
- Wang, W.; Wei, X.; Li, J.; Zhang, G. Guide star catalog generation for short-wave infrared (SWIR) all-time star sensor. Rev. Sci. Instrum. 2018, 89. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, X.; Dai, D.; Tan, W.; Qin, S. Adaptive section non-uniformity correction method of short-wave infrared star images for a star tracker. Appl. Opt. 2022, 61, 6992–6999. [Google Scholar] [CrossRef]
Description | Direction | Repeats | Radius (m) | Altitude (m) |
---|---|---|---|---|
Takeoff | 30 | |||
Orbit to Altitude | CCW | 4 | 300 | 800 |
Straight Legs | N/S | 6 | 2500 | 800 |
Orbit | CW | 1 | 1200 | 800 |
Orbit | CW | 2 | 600 | 800 |
Orbit | CCW | 1 | 600 | 800 |
Orbit | CCW | 1 | 1200 | 800 |
Orbit to Altitude | CCW | 1 | 300 | 100 |
Land | 0 |
Description | Direction | Radius (m) | Pos. Error (km) | Iterations |
---|---|---|---|---|
Orbit to Altitude (1) | CCW | 300 | 3.56 | 5 |
Orbit to Altitude (2) | CCW | 300 | 7.18 | 4 |
Orbit to Altitude (3) | CCW | 300 | 9.67 | 4 |
Orbit to Altitude (4) | CCW | 300 | 9.89 | 4 |
Orbit (5) | CW | 1200 | 2.21 | 4 |
Orbit (6) | CW | 600 | 3.48 | 5 |
Orbit (7) | CW | 600 | 2.54 | 5 |
Orbit (8) | CCW | 600 | 1.73 | 5 |
Orbit (9) | CCW | 1200 | 2.90 | 4 |
Orbit to Altitude (10) | CCW | 300 | 7.16 | 6 |
Initial Orientation Error | Final Pos. Error (km) | Iterations |
---|---|---|
Nil (calibrated) | 2.47 | 2 |
Initial Guess () | 2.49 | 4 |
45° | 2.46 | 5 |
60° | 2.51 | 5 |
85° | 2.49 | 6 |
120° | 19,987.66 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teague, S.; Chahl, J. An Algorithm for Affordable Vision-Based GNSS-Denied Strapdown Celestial Navigation. Drones 2024, 8, 652. https://doi.org/10.3390/drones8110652
Teague S, Chahl J. An Algorithm for Affordable Vision-Based GNSS-Denied Strapdown Celestial Navigation. Drones. 2024; 8(11):652. https://doi.org/10.3390/drones8110652
Chicago/Turabian StyleTeague, Samuel, and Javaan Chahl. 2024. "An Algorithm for Affordable Vision-Based GNSS-Denied Strapdown Celestial Navigation" Drones 8, no. 11: 652. https://doi.org/10.3390/drones8110652
APA StyleTeague, S., & Chahl, J. (2024). An Algorithm for Affordable Vision-Based GNSS-Denied Strapdown Celestial Navigation. Drones, 8(11), 652. https://doi.org/10.3390/drones8110652