A Review of Drone Technology and Operation Processes in Agricultural Crop Spraying
Abstract
:1. Introduction
2. Search Strategy for Information
2.1. Selection and Compilation of Studies
2.1.1. Identification
2.1.2. Screening
2.1.3. Eligibility
2.1.4. Data Analysis
3. Spray Drones for Agricultural Applications
3.1. Improved Spraying with Agricultural Drone Technologies
3.2. Operational Parameters
3.2.1. Performing Drone Spraying
3.2.2. Flight Path Planning
3.2.3. Field Spraying
3.2.4. Wind Speeds (m/s)
3.2.5. Spray Height for Drones (m)
3.2.6. Application Rate in Crop Canopies: Adjusting Volume for Efficiency (L/ha)
3.2.7. Effective Swath Width
3.2.8. Nozzles
3.2.9. Spray Pressure (MPa)
3.2.10. Droplet Penetration Rate
3.2.11. Droplet Deposition (µL/cm2)
3.2.12. Drift
3.2.13. Post-Spraying Operations
3.2.14. Evaluation of Spraying Using Water-Sensitive Paper
3.2.15. Tracers
3.3. Spray Applications of Chemical and Natural Compounds with Agricultural Drones
3.3.1. Chemical Compounds
3.3.2. Adjuvants in Drone-Based Pesticide Application
3.3.3. Natural Compounds
3.4. Evaluations of Pest Control Efficacy
3.5. Considerable Limitations
4. Conclusions
5. Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Declaration of Generative AI in Scientific Writing
Conflicts of Interest
References
- World Health Organization. The State of Food Security and Nutrition in the World 2023: Urbanization, Agrifood Systems Transformation and Healthy Diets Across the Rural–Urban Continuum; Food & Agriculture Organization: Rome, Italy, 2023. [CrossRef]
- Gao, Q.; Ma, J.; Liu, Q.; Liao, M.; Xiao, J.; Jiang, M.; Shi, Y.; Cao, H. Effect of application method and formulation on prothioconazole residue behavior and mycotoxin contamination in wheat. Sci. Total Environ. 2020, 729, 139019. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.T.; Chen, J.M.; Chang, Y.Y.; Lin, S.D.; Chen, S.T.; Hung, Y.T. Assessing the effectiveness of mitigating pesticide-related disease risk among pesticide-spraying drone operators in Taiwan. Am. J. Ind. Med. 2024, 67, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Stehr, N.J. Drones: The Newest Technology for Precision Agriculture. Nat. Sci. Educ. 2015, 44, 89–91. [Google Scholar] [CrossRef]
- Sahni, R.K.; Kumar, S.P.; Thorat, D.; Rajwade, Y.; Jyoti, B.; Ranjan, J.; Anand, R. Drone Spraying System for Efficient Agrochemical Application in Precision Agriculture. In Applications of Computer Vision and Drone Technology in Agriculture 4.0; Chouhan, S.S., Singh, U.P., Jain, S., Eds.; Springer Nature: Singapore, 2024; pp. 225–244. [Google Scholar] [CrossRef]
- Iost Filho, F.H.; Heldens, W.B.; Kong, Z.; de Lange, E.S. Drones: Innovative Technology for Use in Precision Pest Management. J. Econ. Entomol. 2020, 113, 1–25. [Google Scholar] [CrossRef]
- Liu, Y.; Ru, Y.; Duan, L.; Qu, R. Model and design of real-time control system for aerial variable spray. PLoS ONE 2020, 15, e0235700. [Google Scholar] [CrossRef]
- Hu, J.; Wang, T.; Yang, J.; Lan, Y.; Lv, S.; Zhang, Y. WSN-Assisted UAV Trajectory Adjustment for Pesticide Drift Control. Sensors 2020, 20, 5473. [Google Scholar] [CrossRef]
- Wang, G.; Han, Y.; Li, X.; Andaloro, J.; Chen, P.; Hoffmann, W.C.; Han, X.; Chen, S.; Lan, Y. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Sci. Total Environ. 2020, 737, 139793. [Google Scholar] [CrossRef]
- Wei, K.; Xu, W.; Liu, Q.; Yang, L.; Chen, Z. Preparation of a Chlorantraniliprole-Thiamethoxam Ultralow-Volume Spray and Application in the Control of Spodoptera frugiperda. ACS Omega 2020, 5, 19293–19303. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, Y.; Zhang, L.; Noguchi, R.; Ahamed, T. Development of a Recognition System for Spraying Areas from Unmanned Aerial Vehicles Using a Machine Learning Approach. Sensors 2019, 19, 313. [Google Scholar] [CrossRef]
- Hunter, J.E.; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management. Pest Manag. Sci. 2020, 76, 1386–1392. [Google Scholar] [CrossRef]
- Nath, S. A vision of precision agriculture: Balance between agricultural sustainability and environmental stewardship. Agron. J. 2023, 116, 1126–1143, ISSN 0002-1962 1435-0645. [Google Scholar] [CrossRef]
- Sapkota, R.; Stenger, J.; Ostlie, M.; Flores, P. Towards reducing chemical usage for weed control in agriculture using UAS imagery analysis and computer vision techniques. Sci. Rep. 2023, 13, 6548. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Guleria, A. Revolutionizing Agriculture: The Application of Computer Vision and Drone Technology. In Applications of Computer Vision and Drone Technology in Agriculture 4.0; Springer: Berlin/Heidelberg, Germany, 2024; pp. 309–321. [Google Scholar] [CrossRef]
- Sharma, S.; Verma, K.; Hardaha, P. Implementation of artificial intelligence in agriculture. J. Comput. Cogn. Eng. 2023, 2, 155–162. [Google Scholar] [CrossRef]
- Parahoo, K. Nursing Research: Principles, Process and Issues; Bloomsbury Publishing: London, UK, 2014. [Google Scholar]
- Araújo, W.C.O. Recuperação da informação em saúde: Construção, modelos e estratégias. Convergências Em Ciência Da Informação 2020, 3, 100–134. [Google Scholar] [CrossRef]
- Meesaragandla, S.; Jagtap, M.P.; Khatri, N.; Madan, H.; Vadduri, A.A. Herbicide spraying and weed identification using drone technology in modern farms: A comprehensive review. Results Eng. 2024, 21, 101870. [Google Scholar] [CrossRef]
- Zhu, H.; Li, H.; Zhang, C.; Li, J.; Zhang, H. Performance characterization of the UAV chemical application based on CFD simulation. Agronomy 2019, 9, 308. [Google Scholar] [CrossRef]
- Ni, M.; Wang, H.; Liu, X.; Liao, Y.; Fu, L.; Wu, Q.; Mu, J.; Chen, X.; Li, J. Design of variable spray system for plant protection UAV based on CFD simulation and regression analysis. Sensors 2021, 21, 638. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, B.; Li, W.; Yang, S.; Zheng, Y.; Liu, X. Stereoscopic plant-protection system integrating UAVs and autonomous ground sprayers for orchards. Front. Plant Sci. 2022, 13, 1040808. [Google Scholar] [CrossRef]
- Carreño Ruiz, M.; Bloise, N.; Guglieri, G.; D’Ambrosio, D. Numerical Analysis and Wind Tunnel Validation of Droplet Distribution in the Wake of an Unmanned Aerial Spraying System in Forward Flight. Drones 2022, 6, 329. [Google Scholar] [CrossRef]
- Wang, J.; Lv, X.; Wang, B.; Lan, X.; Yan, Y.; Chen, S.; Lan, Y. Numerical Simulation and Analysis of Droplet Drift Motion under Different Wind Speed Environments of Single-Rotor Plant Protection UAVs. Drones 2023, 7, 128. [Google Scholar] [CrossRef]
- Zhu, Y.; Guo, Q.; Tang, Y.; Zhu, X.; He, Y.; Huang, H.; Luo, S. CFD simulation and measurement of the downwash airflow of a quadrotor plant protection UAV during operation. Comput. Electron. Agric. 2022, 201, 107286. [Google Scholar] [CrossRef]
- Tang, Y.; Fu, Y.; Guo, Q.; Huang, H.; Tan, Z.; Luo, S. Numerical simulation of the spatial and temporal distributions of the downwash airflow and spray field of a co-axial eight-rotor plant protection UAV in hover. Comput. Electron. Agric. 2023, 206, 107634. [Google Scholar] [CrossRef]
- Basso, M.; Stocchero, D.; Ventura Bayan Henriques, R.; Vian, A.L.; Bredemeier, C.; Konzen, A.A.; Pignaton de Freitas, E. Proposal for an Embedded System Architecture Using a GNDVI Algorithm to Support UAV-Based Agrochemical Spraying. Sensors 2019, 19, 5397. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Iqbal, J.; Wasim, A. Real-time recognition of spraying area for UAV sprayers using a deep learning approach. PLoS ONE 2021, 16, e0249436. [Google Scholar] [CrossRef]
- Wang, L.; Yue, X.; Liu, Y.; Wang, J.; Wang, H. An Intelligent Vision Based Sensing Approach for Spraying Droplets Deposition Detection. Sensors 2019, 19, 933. [Google Scholar] [CrossRef]
- Hunter, J.E.; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Coverage and drift potential associated with nozzle and speed selection for herbicide applications using an unmanned aerial sprayer. Weed Technol. 2020, 34, 235–240. [Google Scholar] [CrossRef]
- Ukaegbu, U.F.; Tartibu, L.K.; Okwu, M.O.; Olayode, I.O. Development of a light-weight unmanned aerial vehicle for precision agriculture. Sensors 2021, 21, 4417. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, W.; Dammer, K.H.; Guo, L.; Cao, Z. Ag-YOLO: A Real-Time Low-Cost Detector for Precise Spraying With Case Study of Palms. Front. Plant Sci. 2021, 12, 753603. [Google Scholar] [CrossRef]
- Chen, C.J.; Huang, Y.Y.; Li, Y.S.; Chen, Y.C.; Chang, C.Y.; Huang, Y.M. Identification of Fruit Tree Pests with Deep Learning on Embedded Drone to Achieve Accurate Pesticide Spraying. IEEE Access 2021, 9, 21986–21997. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Wu, H.; Liu, Z.; Li, J. A YOLOv3-based rice vortex detecting system using dual collaborative UAVs. J. ASABE 2022, 65, 1133–1140. [Google Scholar] [CrossRef]
- Sassu, A.; Motta, J.; Deidda, A.; Ghiani, L.; Carlevaro, A.; Garibotto, G.; Gambella, F. Artichoke deep learning detection network for site-specific agrochemicals UAS spraying. Comput. Electron. Agric. 2023, 213, 108185. [Google Scholar] [CrossRef]
- Akdoğan, C.; Özer, T.; Oğuz, Y. Design and implementation of an AI-controlled spraying drone for agricultural applications using advanced image preprocessing techniques. Robot. Intell. Autom. 2024, 44, 131–151. [Google Scholar] [CrossRef]
- Jayaram, D.K.; Raja, V.; Stanislaus Arputharaj, B.; Al-Bonsrulah, H.A.Z. Design, Multiperspective Investigations, and Performance Analysis of Multirotor Unmanned Aerial Vehicle for Precision Farming. Int. J. Aerosp. Eng. 2024, 2024, 8703004. [Google Scholar] [CrossRef]
- Wang, Z.; Wen, S.; Lan, Y.; Liu, Y.; Dong, Y. Variable-rate spray system for unmanned aerial applications using lag compensation algorithm and pulse width modulation spray technology. J. Agric. Eng. 2024, 55, 39–52. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Chen, L.; Hewitt, A.J.; He, X.; Ding, C.; Tang, Q.; Liu, B. Toward a remote sensing method based on commercial LiDAR sensors for the measurement of spray drift and potential drift reduction. Sci. Total Environ. 2024, 918, 170819. [Google Scholar] [CrossRef]
- Rahman, M.F.F.; Fan, S.; Zhang, Y.; Chen, L. A comparative study on application of unmanned aerial vehicle systems in agriculture. Agriculture 2021, 11, 22. [Google Scholar] [CrossRef]
- Aksüt, G.; Eren, T. Evaluation of personal protective equipment to protect health and safety in pesticide use. Front. Appl. Math. Stat. 2024, 9, 1305367. [Google Scholar] [CrossRef]
- Ivezić, A.; Trudić, B.; Stamenković, Z.; Kuzmanović, B.; Perić, S.; Ivošević, B.; Buđen, M.; Petrović, K. Drone-related agrotechnologies for precise plant protection in western balkans: Applications, possibilities, and legal framework limitations. Agronomy 2023, 13, 2615. [Google Scholar] [CrossRef]
- Huang, J.; Luo, Y.; Quan, Q.; Wang, B.; Xue, X.; Zhang, Y. An autonomous task assignment and decision-making method for coverage path planning of multiple pesticide spraying UAVs. Comput. Electron. Agric. 2023, 212, 108128. [Google Scholar] [CrossRef]
- Liu, Y.; Noguchi, N.; Liang, L. Development of a positioning system using UAV-based computer vision for an airboat navigation in paddy field. Comput. Electron. Agric. 2019, 162, 126–133. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, P.; Ru, Y.; Wu, D.; Wang, S.; Yin, N.; Meng, F.; Liu, Z. A scheduling route planning algorithm based on the dynamic genetic algorithm with ant colony binary iterative optimization for unmanned aerial vehicle spraying in multiple tea fields. Front. Plant Sci. 2022, 13, 998962. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Mo, Z.; Ma, C.; Xiao, J.; Jia, R.; Lan, Y.; Zhang, Y. Design and validation of a multi-objective waypoint planning algorithm for UAV spraying in orchards based on improved ant colony algorithm. Front. Plant Sci. 2023, 14, 1101828. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Lan, Y.; Huang, X.; Qi, H.; Wang, G.; Wang, J.; Wang, L.; Xiao, H. Droplet deposition and control of planthoppers of different nozzles in two-stage rice with a quadrotor unmanned aerial vehicle. Agronomy 2020, 10, 303. [Google Scholar] [CrossRef]
- Martinez-Guanter, J.; Agüera, P.; Agüera, J.; Pérez-Ruiz, M. Spray and economics assessment of a UAV-based ultra-low-volume application in olive and citrus orchards. Precis. Agric. 2020, 21, 226–243. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Zhang, Z.; Han, L.; Li, Y.; Zhang, H.; Wongsuk, S.; Wu, X.; He, X. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards. Pest Manag. Sci. 2022, 78, 2449–2466. [Google Scholar] [CrossRef]
- Özyurt, H.B.; Duran, H.; Çelen, I.H. Determination of the Application Parameters of Spraying Drones for Crop Protection in Hazelnut Orchards. J. Tekirdag. Agric. Facul. 2022, 19, 819–828. [Google Scholar] [CrossRef]
- Dengeru, Y.; Ramasamy, K.; Allimuthu, S.; Balakrishnan, S.; Kumar, A.P.M.; Kannan, B.; Karuppasami, K.M. Study on Spray Deposition and Drift Characteristics of UAV Agricultural Sprayer for Application of Insecticide in Redgram Crop (Cajanus cajan L. Millsp.). Agronomy 2022, 12, 3196. [Google Scholar] [CrossRef]
- Li, L.; Hu, Z.; Liu, Q.; Yi, T.; Han, P.; Zhang, R.; Pan, L. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Front. Plant Sci. 2022, 13, 981494. [Google Scholar] [CrossRef]
- Wang, J.; Ma, C.; Chen, P.; Yao, W.; Yan, Y.; Zeng, T.; Chen, S.; Lan, Y. Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Areca catechu protection. Front. Plant Sci. 2023, 14, 1093912. [Google Scholar] [CrossRef]
- Miranda, M.P.; Eduardo, W.I.; Scapin, M.d.S.; Volpe, H.X.L.; Rodriguez, G.M.; Vizoni, M.C.; Hakvoort, R.B.J. Insecticide application using an unmanned aerial vehicle for Diaphorina citri control in citrus orchards. J. Appl. Entomol. 2023, 147, 716–727. [Google Scholar] [CrossRef]
- Arakawa, T.; Kamio, S. Control Efficacy of UAV-Based Ultra-Low-Volume Application of Pesticide in Chestnut Orchards. Plants 2023, 12, 2597. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.D.L.; Cunha, J.P.A.R.D.; Nomelini, Q.S.S. Use of Unmanned Aerial Vehicle for Pesticide Application in Soybean Crop. AgriEngineering 2023, 5, 2049–2063. [Google Scholar] [CrossRef]
- Yallappa, D.; Kavitha, R.; Surendrakumar, A.; Suthakar, B.; Mohan Kumar, A.P.; Kalarani, M.K.; Kannan, B. Effect of downwash airflow distribution of multi-rotor unmanned aerial vehicle on spray droplet deposition characteristics in rice crop. Curr. Sci. 2023, 125, 172–182. [Google Scholar] [CrossRef]
- Qi, P.; Zhang, L.; Wang, Z.; Han, H.; Müller, J.; Li, T.; Wang, C.; Huang, Z.; He, M.; Liu, Y.; et al. Effect of Operational Parameters of Unmanned Aerial Vehicle (UAV) on Droplet Deposition in Trellised Pear Orchard. Drones 2023, 7, 57. [Google Scholar] [CrossRef]
- Sheikhigarjan, A.; Safari, M.; Ghazi, M.M.; Zarnegar, A.; Shahrokhi, S.; Bagheri, N.; Moein, S.; Seyedin, P. Chemical control of wheat sunn pest, Eurygaster integriceps, by UAV sprayer and very low volume knapsack sprayer. Phytoparasitica 2024, 52, 49. [Google Scholar] [CrossRef]
- Dubuis, P.H.; Droz, M.; Melgar, A.; Zürcher, U.A.; Zarn, J.A.; Gindro, K.; König, S.L.B. Environmental, bystander and resident exposure from orchard applications using an agricultural unmanned aerial spraying system. Sci. Total Environ. 2023, 881, 163371. [Google Scholar] [CrossRef]
- Sarri, D.; Martelloni, L.; Rimediotti, M.; Lisci, R.; Lombardo, S.; Vieri, M. Testing a multi-rotor unmanned aerial vehicle for spray application in high slope terraced vineyard. J. Agric. Eng. 2019, 50, 38–47. [Google Scholar] [CrossRef]
- Verma, A.; Singh, M.; Parmar, R.; Bhullar, K. Feasibility study on hexacopter UAV based sprayer for application of environment-friendly biopesticide in guava orchard. J. Environ. Biol. 2022, 43, 97–104. [Google Scholar] [CrossRef]
- Meng, Y.; Zhong, W.; Liu, C.; Su, J.; Lan, Y.; Wang, Z.; Wang, M. UAV spraying on citrus crop: Impact of tank-mix adjuvant on the contact angle and droplet distribution. PeerJ 2022, 10, e13064. [Google Scholar] [CrossRef]
- Wang, L.; Xia, S.; Zhang, H.; Li, Y.; Huang, Z.; Qiao, B.; Zhong, L.; Cao, M.; He, X.; Wang, C.; et al. Tank-mix adjuvants improved spray performance and biological efficacy in rice insecticide application with unmanned aerial vehicle sprayer. Pest Manag. Sci. 2024, 80, 4371–4385. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Qin, C.; Liu, D.; Zhang, K. Ecological analysis on spray performance of multi-rotor unmanned aerial sprayer in soybean field. Ekoloji 2019, 28, 4573–4579. [Google Scholar] [CrossRef]
- Thomson, S.J.; Huang, Y. Comparison of weather acquisition periods influencing a statistical model of aerial pesticide drift. Agronomy 2023, 13, 213. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, S.; Wang, G.; Lan, Y. Drift evaluation of a quadrotor unmanned aerial vehicle (UAV) sprayer: Effect of liquid pressure and wind speed on drift potential based on wind tunnel test. Appl. Sci. 2021, 11, 7258. [Google Scholar] [CrossRef]
- Hussain, S.; Masud Cheema, M.J.; Arshad, M.; Ahmad, A.; Latif, M.A.; Ashraf, S.; Ahmad, S. Spray uniformity testing of unmanned aerial spraying system for precise agro-chemical applications. Pak. J. Agric. Sci. 2019, 56, 897–903. [Google Scholar] [CrossRef]
- Eun, H.-R.; Kim, S.-H.; Lee, Y.-H.; Kim, S.-M.; Lee, Y.-J.; Jung, H.-Y.; Min, Y.-G.; Noh, H.H.; Shin, Y. Comparison of off-target pesticide drift in paddy fields from unmanned aerial vehicle spraying using cellulose deposition sampler. Ecotoxicol. Environ. Saf. 2024, 285, 117075. [Google Scholar] [CrossRef]
- Balsari, P.; Grella, M.; Marucco, P.; Matta, F.; Miranda-Fuentes, A. Assessing the influence of air speed and liquid flow rate on the droplet size and homogeneity in pneumatic spraying. Pest Manag. Sci. 2019, 75, 366–379. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, L.; Wu, Y.; Musiu, E.M.; Cheng, Z.; Wang, P. Numerical simulation of airflow field from a six–rotor plant protection drone using lattice Boltzmann method. Biosyst. Eng. 2020, 197, 336–351. [Google Scholar] [CrossRef]
- Wang, J.; Lan, Y.; Wen, S.; Hewitt, A.J.; Yao, W.; Chen, P. Meteorological and flight altitude effects on deposition, penetration, and drift in pineapple aerial spraying. Asia-Pac. J. Chem. Eng. 2020, 15, e2382. [Google Scholar] [CrossRef]
- Wang, J.; Lan, Y.; Zhang, H.; Zhang, Y.; Wen, S.; Yao, W.; Deng, J. Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions. Int. J. Agric. Biol. Eng. 2018, 11, 5–12. [Google Scholar] [CrossRef]
- Guo, S.; Chen, C.; Du, G.; Yu, F.; Yao, W.; Lan, Y. Evaluating the use of unmanned aerial vehicles for spray applications in mountain Nanguo pear orchards. Pest Manag. Sci. 2024, 80, 3590–3602. [Google Scholar] [CrossRef]
- Gao, J.; Bo, P.; Lan, Y.; Sun, L.; Liu, H.; Li, X.; Wang, G.; Wang, H. Study on droplet deposition characteristics and application of small and medium crown garden plants sprayed by UAV sprayer. Front. Plant Sci. 2024, 15, 1343793. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Giles, D.K.; Niederholzer, F.J.; Andaloro, J.T.; Lang, E.B.; Watson, L.J. Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Pest Manag. Sci. 2021, 77, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, A.J.; Galea, V.J.; O’Donnell, C. Application technology for bioherbicides: Challenges and opportunities with dry inoculum and liquid spray formulations. Pest Manag. Sci. 2024, 80, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Yao, W.; Xu, T.; Ma, H.; Sun, M.; Chen, C.; Lan, Y. Assessing the application of spot spray in Nanguo pear orchards: Effect of nozzle type, spray volume rate and adjuvant. Pest Manag. Sci. 2022, 78, 3564–3575. [Google Scholar] [CrossRef]
- Bonds, J.A.; Pai, N.; Hovinga, S.; Stump, K.; Haynie, R.; Flack, S.; Bui, T. Spray Drift, Operator Exposure, Crop Residue and Efficacy: Early Indications for Equivalency of Uncrewed Aerial Spray Systems with Conventional Application Techniques. J. ASABE 2024, 67, 27–41. [Google Scholar] [CrossRef]
- Chojnacki, J.; Pachuta, A. Impact of the parameters of spraying with a small unmanned aerial vehicle on the distribution of liquid on young cherry trees. Agriculture 2021, 11, 1094. [Google Scholar] [CrossRef]
- Wang, C.; Herbst, A.; Zeng, A.; Wongsuk, S.; Qiao, B.; Qi, P.; Bonds, J.; Overbeck, V.; Yang, Y.; Gao, W.; et al. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Sci. Total Environ. 2021, 777, 146181. [Google Scholar] [CrossRef]
- Bian, Z.; Lan, Y.; Wang, M.; Shan, C.; Gu, H.; Han, J. Effect of nozzle angle of plant protection unmanned aerial vehicle on droplet deposition distribution. INMATEH—Agric. Eng. 2024, 72, 214–223. [Google Scholar] [CrossRef]
- Wongsuk, S.; Qi, P.; Wang, C.; Zeng, A.; Sun, F.; Yu, F.; Zhao, X.; He, X. Spray performance and control efficacy against pests in paddy rice by UAV-based pesticide application: Effects of atomization, UAV configuration and flight velocity. Pest Manag. Sci. 2024, 80, 2072–2084. [Google Scholar] [CrossRef]
- Wang, G.; Lan, Y.; Qi, H.; Chen, P.; Hewitt, A.; Han, Y. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: Effect of spray volume on deposition and the control of pests and disease in wheat. Pest Manag. Sci. 2019, 75, 1546–1555. [Google Scholar] [CrossRef]
- Aliverdi, A. Increased outlet design of flat-fan nozzle improves octocopter unmanned aerial vehicle sprayer’s efficiency. Crop Prot. 2024, 182, 106736. [Google Scholar] [CrossRef]
- Yu, S.-H.; Yun, Y.-T.; Choi, Y.; Dafsari, R.A.; Lee, J. Effect of injection angle on drift potential reduction in pesticide injection nozzle spray applied in domestic Agricultural Drones. J. Biosyst. Eng. 2021, 46, 129–138. [Google Scholar] [CrossRef]
- Yu, S.-H.; Kang, Y.; Lee, C.-G. Comparison of the spray effects of air induction nozzles and flat fan nozzles installed on agricultural drones. Appl. Sci. 2023, 13, 11552. [Google Scholar] [CrossRef]
- Cerruto, E.; Manetto, G.; Papa, R.; Longo, D. Modelling spray pressure effects on droplet size distribution from agricultural nozzles. Appl. Sci. 2021, 11, 9283. [Google Scholar] [CrossRef]
- Guo, S.; Li, J.; Yao, W.; Zhan, Y.; Li, Y.; Shi, Y. Distribution characteristics on droplet deposition of wind field vortex formed by multi-rotor UAV. PLoS ONE 2019, 14, e0220024. [Google Scholar] [CrossRef]
- Sánchez-Fernández, L.; Barrera-Báez, M.; Martínez-Guanter, J.; Pérez-Ruiz, M. Reducing environmental exposure to PPPs in super-high density olive orchards using UAV sprayers. Front. Plant Sci. 2023, 14, 1272372. [Google Scholar] [CrossRef]
- Shan, C.; Wang, G.; Wang, H.; Wu, L.; Song, C.; Hussain, M.; Lan, Y. Assessing the efficiency of UAV for pesticide application in disease management of peanut crop. Pest Manag. Sci. 2024, 80, 4505–4515. [Google Scholar] [CrossRef]
- Qin, W.; Chen, P. Analysis of the research progress on the deposition and drift of spray droplets by plant protection UAVs. Sci. Rep. 2023, 13, 14935. [Google Scholar] [CrossRef]
- Wang, S.; Song, J.; He, X.; Song, L.; Wang, X.; Wang, C.; Wang, Z.; Ling, Y. Performances evaluation of four typical unmanned aerial vehicles used for pesticide application in China. Int. J. Agric. Biol. Eng. 2017, 10, 22–31. [Google Scholar] [CrossRef]
- Makkar, M.S.; Gangwar, S.K. Machinery for plant protection in cotton crop. In Cotton; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Zhang, J.T.; Liu, Y.; Liu, K.; Wang, Q. Spray-on steady-state study of multi-rotor cleaning unmanned aerial vehicle in operation of photovoltaic power station. Energy Rep. 2024, 11, 5638–5653. [Google Scholar] [CrossRef]
- Li, X.; Andaloro, J.T.; Lang, E.B.; Pan, Y. Best management practices for unmanned aerial vehicles (UAVs) application of insecticide products on rice. In 2019 ASABE Annual International Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2019; p. 1. [Google Scholar] [CrossRef]
- Abd. Kharim, M.N.; Wayayok, A.; Mohamed Shariff, A.R.; Abdullah, A.F.; Husin, E.M. Droplet deposition density of organic liquid fertilizer at low altitude UAV aerial spraying in rice cultivation. Comput. Electron. Agric. 2019, 167, 105045. [Google Scholar] [CrossRef]
- Crause, D.H.; Vitória, E.L.D.; Ribeiro, L.F.O.; Ferreira, F.D.A.; Lan, Y.; Chen, P. Droplet Deposition of Leaf Fertilizers Applied by an Unmanned Aerial Vehicle in Coffea Canephora Plants. Agronomy 2023, 13, 1506. [Google Scholar] [CrossRef]
- Sinha, R.; Johnson, J.; Power, K.; Moodie, A.; Warhurst, E.; Barbosa, R. Understanding Spray Attributes of Commercial UAAS as Impacted by Operational and Design Parameters. Drones 2022, 6, 281. [Google Scholar] [CrossRef]
- Lee, C.G.; Yu, S.H.; Rhee, J.Y. Effects of Unmanned Aerial Spray System Flight Altitude and Collector Height on Spray Deposition Measured Using a Food Dye Tracer. Agriculture 2023, 13, 96. [Google Scholar] [CrossRef]
- Gao, S.; Wang, G.; Zhou, Y.; Wang, M.; Yang, D.; Yuan, H.; Yan, X. Water-soluble food dye of Allura Red as a tracer to determine the spray deposition of pesticide on target crops. Pest Manag. Sci. 2019, 75, 2592–2597. [Google Scholar] [CrossRef]
- Herbst, A.; Glaser, M.; Bartsch, K.U. Spray drift from application of plant protection products with drones in vineyards. J. Fur Kult. 2023, 75, 151–157. [Google Scholar] [CrossRef]
- Leroy, B.M.L.; Gossner, M.M.; Lauer, F.P.M.; Petercord, R.; Seibold, S.; Jaworek, J.; Weisser, W.W. Assessing Insecticide Effects in Forests: A Tree-Level Approach Using Unmanned Aerial Vehicles. J. Econ. Entomol. 2019, 112, 2686–2694. [Google Scholar] [CrossRef]
- Liu, Q.; Wei, K.; Yang, L.; Xu, W.; Xue, W. Preparation and application of a thidiazuron·diuron ultra-low-volume spray suitable for plant protection unmanned aerial vehicles. Sci. Rep. 2021, 11, 4998. [Google Scholar] [CrossRef]
- Yan, X.; Yuan, H.; Chen, Y.; Shi, X.; Liu, X.; Wang, Z.; Liu, Y.; Yang, D. Broadcasting of tiny granules by drone to mimic liquid spraying for the control of fall armyworm (Spodoptera frugiperda). Pest Manag. Sci. 2022, 78, 43–51. [Google Scholar] [CrossRef]
- Ochieng’, V.; Rwomushana, I.; Ong’amo, G.; Ndegwa, P.; Kamau, S.; Makale, F.; Chacha, D.; Gadhia, K.; Akiri, M. Optimum Flight Height for the Control of Desert Locusts Using Unmanned Aerial Vehicles (UAV). Drones 2023, 7, 233. [Google Scholar] [CrossRef]
- Sreenivas, A.G. Unmanned Aerial Vehicle (UAVs): A Novel Spraying Technique for Management of Sucking Insect Pests in Cotton Ecosystem. J. Biosyst. Eng. 2024, 49, 103–111. [Google Scholar] [CrossRef]
- Pranaswi, D.; Jagtap, M.P.; Shinde, G.U.; Khatri, N.; Shetty, S.; Pare, S. Analyzing the synergistic impact of UAV-based technology and knapsack sprayer on weed management, yield-contributing traits, and yield in wheat (Triticum aestivum L.) for enhanced agricultural operations. Comput. Electron. Agric. 2024, 219, 108796. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, R.; Yu, M.; Liu, Y.; Ma, Y.; Guo, X.; Gu, Y.C.; Formstone, C.; Xu, Y.; Wu, X. Enhanced dosage delivery of pesticide under unmanned aerial vehicle condition for peanut plant protection: Tank-mix adjuvants and formulation improvement. Pest Manag. Sci. 2024, 80, 1632–1644. [Google Scholar] [CrossRef] [PubMed]
- Nahiyoon, S.A.; Cui, L.; Yang, D.; Yan, X.; Rui, C.; Yuan, H. Biocidal radiuses of cycloxaprid, imidacloprid and lambda-cyhalothrin droplets controlling against cotton aphid (Aphis gossypii) using an unmanned aerial vehicle. Pest Manag. Sci. 2020, 76, 3020–3029. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, Q.; Han, X.; Zeeshan, M.; Fang, Z.; Dou, Z. Effect of aerial application of adjuvants on pepper defoliant droplet deposition and efficacy of defoliation sprayed by unmanned aerial vehicles. Front. Plant Sci. 2022, 13, 917462. [Google Scholar] [CrossRef]
- Zhao, R.; Yu, M.; Sun, Z.; Li, L.J.; Shang, H.Y.; Xi, W.J.; Li, B.; Li, Y.Y.; Xu, Y.; Wu, X.M. Using tank-mix adjuvant improves the physicochemical properties and dosage delivery to reduce the use of pesticides in unmanned aerial vehicles for plant protection in wheat. Pest Manag. Sci. 2022, 78, 2512–2522. [Google Scholar] [CrossRef]
- Zhao, R.; Sun, Z.; Bird, N.; Gu, Y.C.; Xu, Y.; Zhang, Z.H.; Wu, X.M. Effects of tank-mix adjuvants on physicochemical properties and dosage delivery at low dilution ratios for unmanned aerial vehicle application in paddy fields. Pest Manag. Sci. 2022, 78, 1582–1593. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Hu, H.; Liu, B.; Wang, F.; Wang, W.; Li, X.; Xu, W. Evaluation of the droplet deposition and control effect of a special adjuvant for unmanned aerial vehicle (UAV) sprayers. J. Pest. Sci. 2023, 48, 78–85. [Google Scholar] [CrossRef]
- Paul, R.A.I.; Arthanari, P.M.; Pazhanivelan, S.; Kavitha, R.; Djanaguiraman, M. UAV-based Herbicide Application for Efficient Weed Management in Direct-seeded Rice. Agric. Sci. Dig. 2024, 44, 295–300. [Google Scholar] [CrossRef]
- Faers, M.A.; Sato, Y.; Hilz, E.; Lamprecht, S.; Dong, J.; Qi, F.; Ratschinski, A.; Peris, G.; Gaertzen, O.; Roechling, A. Suspension Concentrate crop protection formulation design and performance for low spray volume and UAS spray application. Pest Manag. Sci. 2024, 80, 220–234. [Google Scholar] [CrossRef]
- Del Pozo-Valdivia, A.I.; Morgan, E.; Bennett, C. In-Field Evaluation of Drone-Released Lacewings for Aphid Control in California Organic Lettuce. J. Econ. Entomol. 2021, 114, 1882–1888. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Chen, S.; Wang, G.; Fu, J.; Lan, Y. Biological control technology and application based on agricultural unmanned aerial vehicle (UAV) intelligent delivery of insect natural enemies (Trichogramma) carrier. Pest Manag. Sci. 2021, 77, 3259–3272. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Mantri, A.; Bough, G.; Patnaik, A.; Yadav, S.; Nansen, C.; Kong, Z. Data-driven vermiculite distribution modelling for UAV-based precision pest management. Front. Robot. AI 2022, 9, 854381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Q.; Liang, Y.J.; Qin, Z.Q.; Li, D.W.; Wei, C.Y.; Wei, J.J.; Li, Y.R.; Song, X.P. Application of Multi-rotor Unmanned Aerial Vehicle Application in Management of Stem Borer (Lepidoptera) in Sugarcane. Sugar Tech. 2019, 21, 847–852. [Google Scholar] [CrossRef]
- Song, X.-P.; Liang, Y.-J.; Zhang, X.-Q.; Qin, Z.-Q.; Wei, J.-J.; Li, Y.-R.; Wu, J.-M. Intrusion of fall armyworm (Spodoptera frugiperda) in sugarcane and its control by drone in China. Sugar Tech. 2020, 22, 734–737. [Google Scholar] [CrossRef]
- Xiao, Q.; Du, R.; Yang, L.; Han, X.; Zhao, S.; Zhang, G.; Fu, W.; Wang, G.; Lan, Y. Comparison of droplet deposition control efficacy on phytophthora capsica and aphids in the processing pepper field of the unmanned aerial vehicle and knapsack sprayer. Agronomy 2020, 10, 215. [Google Scholar] [CrossRef]
- Richardson, B.; Rolando, C.A.; Somchit, C.; Dunker, C.; Strand, T.M.; Kimberley, M.O. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Pest Manag. Sci. 2020, 76, 1282–1290. [Google Scholar] [CrossRef]
- Fritz, B.; Martin, D. Measurement and analysis methods for determination of effective swath width from unmanned aerial vehicles. In Pesticide Formulation and Delivery Systems: 40th Volume, Formulation, Application and Adjuvant Innovation; ASTM International Publication: West Conshohocken, PA, USA, 2020; pp. 62–85. [Google Scholar] [CrossRef]
Phases | Description |
---|---|
1 | Definition of the theme and guiding question of the study (PICO) |
2 | Definition of selection criteria (inclusion and exclusion of articles) |
3 | Selection of databases and descriptors for accessing the literature |
4 | Data collection |
5 | Analysis of results |
Technology | Methodology | Improvement | Ref |
---|---|---|---|
CFD (Computational Fluid Dynamics) Theoretical | A discretization mathematical method from Computational Fluid Dynamics (CFD) to solve fluid dynamics problems | Theoretical support about droplet drift and deposition | [20] |
Regression analysis used a simulation dataset to train support vector regression and neural network models | Deposition distribution | [21] | |
Complemented with orthogonal experiments | Uniform spray | [22] | |
Complemented with wind tunnel experiments | Spray distribution, on-target deposition, and reduced droplet drift | [23,24] | |
Considering velocity distribution of the downwash airflow | Droplet penetration | [25,26] | |
Real-Time Integrated System with Image Processing | Design and development of a real-time integrated system that utilizes image-processing algorithms on a commercial off-the-shelf (COTS) UAV platform | Image processing in high resolution | [27] |
Machine Learning for Spray Area Recognition | A mutual subspace method (MSM) | Recognize the spray and non-spray areas | [11,28] |
Intelligent Vision Sensor Node | A neural network for achieving uniform spraying, adjusting the spray flow rate based on the predicted deposition amount | Rapid collection of droplets deposition | [29] |
Wireless Sensor Network-Based Flight Path Adjustment | A system incorporating deep reinforcement learning, particle swarm optimization algorithms, and neural network-based models for predicting wind speed and direction | Reduction in droplet drift | [8] |
Integration of Remote Weed Mapping (UAV-IS) | Integration of remote weed mapping at specific sites | Reduction in pesticide use | [30] |
Deep Learning Algorithms on Raspberry Pi for Weed Detection | Deep learning algorithms implemented on Raspberry Pi to activate herbicide spraying based on weed detection | Rapid differentiation and adjustment of spraying | [31] |
You Only Look Once (YOLO) | Ag-YOLO, including the Intel Neural Compute Stick 2 (NCS2), and object detection algorithms in the software part | Two times faster | [32] |
YOLOv3-Tiny complemented with NVIDIA Jetson TX2 for Pest Recognition | Determine pest positions in real time | [33] | |
YOLOv3 model integrates the Beidou RTK positioning system and the Manifold computer, along with a data time axis alignment method based on the Robot Operating System (ROS) | Real-time acquisition of parameters | [34] | |
YOLOv5 and Multitemporal Detection. RGB sensor for real-time detection and georeferencing. | Real-time detection and identification of plants | [35] | |
YOLOv7, YOLOv8, and beyond. Artificial intelligence complemented with methods such as Histogram Equalization (HE), Gaussian, and wavelet transform (WT). | Detection and identification of trees and reduction in pesticide use | [36] | |
Artificial intelligence | Algorithms on different datasets | Forecast plant stress | [37] |
VRS System for Precision Spraying | Latency compensation algorithm (LCA) | Precise pesticide spraying, with desired coverage and deposition density | [38] |
Light Detection and Ranging (LiDar) | Short-range remote sensing technology utilizing Light Detection and Ranging (LiDar) point clouds | Droplet drift and deposition | [39] |
Cultivation/Crop | Drone | Tank Volume (L) | No. of Nozzles | Type of Nozzles | Spray Rate (L/min) | Drop Size (µm) | Flight Height (m) | Flight Speed (m/s) | Spraying Pattern | Volume Rate (L/ha) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Rice | Drone-Freedom Eagle 1s | 10 | 4 | Hydraulic, LU110-01 | 1.92–2.36 | 132.8 | 1.5 | 3.3 | ULV | 15 | [47] |
Olive and citrus | DJI s1000+commercial UAV model | 5 | 4 | Fat fan nozzles; HARDI F-110 FLATFAN nozzle | 0.22 | 119 | 2 | 4 | ULV | 0.5 | [48] |
Apple | DJI Agras T20 | 20 | 8 | Flat-fan nozzles, SX11001VS | 0–3.6 | 98.5–137.9 | 3.5 | 1.5 | Inter-row | 85.7 | [49] |
Hazelnut | DJI Agras MG-1P | 10 | 4 | Flat fan nozzles, Teejet XR11001VS | 0.379 | 238–341 | 1.5 and 2 | 12 | ULV | 10 | [50] |
Redgram | E610P six-rotor electric | 10 | 4 | Flat fan nozzles, 2020A-132 series | 0–3.2 | 200–508 | 1.6 | 3 | N | 54 | [51] |
Peach | 3WYD-4-22A | 22 | 4 | Flat-fan nozzles, Lu120-015 | 0.79, 1.58, and 2.37 | 301, 420.54 and 512.51 | 1, 3, 5, 10, 20, and 50 | 1–3 | N | 33 | [52] |
Areca catechu | Jifei P20 | 10 | 4 | Centrifugal nozzle | 0.2–0.8 | 205.89 | 11.09 | 1.5 | LV | 22.5 | [53] |
Citrus | P30 | 16 | 4 | Centrifugal atomization nozzles | 0.5–0.9 | 100 | 4 | 6 | N | 5 | [54] |
Chestnut | T20k | 16 | 8 | Flat-fan hydraulic nozzle, XR11001VS | 3.8, 6.0 | 170–265 | 3 | 5.8 | ULV | 40 | [55] |
Soybean | DJI Agras MG1-P | 10 | 4 | Air-induction flat-fan, AirMix 11001 | 270.97 | 2 | 5.6 | N | 10 | [56] | |
Rice | E610P six-rotor battery-operated UAV | 10 | 4 | Flat fan nozzles, 2020A-132 series | 3.2 | 288 | 1.3 | 3.5 | N | 54.6 | [57] |
Pear | DJI T20 series plant protection UAV | 20 | 8 | Flat-fan nozzles, SX11001VS/SX110015VS | 0–6 | 130–300 | 5.5 | 2.5 | N | 90 | [58] |
Wheat | Hs0615 | 15 | 2 | Centrifugal energy nozzles | 1 | 200 | 1.5 | 5 | N | 15 | [59] |
Apple | DJI Agras t30 | 30 | 16 | Flat spray nozzles, Teejet XR 11002 VK | 0.5 | 278 | 4.2 | 2.08 | N | 140 | [60] |
Grapevine | Six-rotor UAV sprayer, Bly-c-agri model | 10 | 2 | Nozzle holders with diaphragm | 1.24 | 257.79 | 5 | 0.5 | LV | 253.27 | [61] |
Guava | Hexacopter UAV | 10 | 4 | ULV nozzles | 0.85 | 269 | 6.2 | 3 | ULV | 17 | [62] |
Citrus | DJI T30 | 30 | 16 | Flat-fan hydraulic nozzles, 11001VS | 0.42 | 300 | 5 | 3 | N | 75 | [63] |
Rice | DJI Agras T10 | 10 | 4 | Flat-fan nozzles XR11001VS | 1.8 | 163 | 2 | 4 | N | 15 | [64] |
Crop | Drone | Application | Pest | Control Efficacy | Reference |
---|---|---|---|---|---|
Rice | Freedom Eagle 1s (Anyang Quanfeng Aviation Plant Protection Technology Co., Ltd. Anyang, China) | Treatment 1, 3, 5 | Rice planthoppers | 90.8% | [47] |
Wheat | HS0615 (Kasbo Kar Jahan Jadid Co., Iran) | Deltamethrin | Sunn pest | 96% | [59] |
KALRO * Station | DJI Agras T20 (DJI, Shenzhen, China) | Metarhizium acridum | Desert locusts | 80% | [106] |
Sugarcane | 3WWDZ-10A (XAIRCRAFT Technologies Co., Ltd., Guangzhou, China) | Abamectin and lufenuron | Stem borer | 40% | [120] |
Sugarcane | 3WWDZ-10A (XAIRCRAFT Technologies Co., Ltd., Guangzhou, China) | Chlorfenapyr, chlorantraniliprole, and lufenuron. | Fall armyworm | 94.94% | [121] |
Pepper | DJI T16 (DJI Technology Co., Ltd., Shenzhen, China) | Cymoxanil_mancozeb and flutamide. One-third of the pesticide concentration compared to conventional spraying | Phytophthora capsica and aphids | 94.34% | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Munguía, A.; Guerra-Ávila, P.L.; Islas-Ojeda, E.; Flores-Sánchez, J.L.; Vázquez-Martínez, O.; García-Munguía, A.M.; García-Munguía, O. A Review of Drone Technology and Operation Processes in Agricultural Crop Spraying. Drones 2024, 8, 674. https://doi.org/10.3390/drones8110674
García-Munguía A, Guerra-Ávila PL, Islas-Ojeda E, Flores-Sánchez JL, Vázquez-Martínez O, García-Munguía AM, García-Munguía O. A Review of Drone Technology and Operation Processes in Agricultural Crop Spraying. Drones. 2024; 8(11):674. https://doi.org/10.3390/drones8110674
Chicago/Turabian StyleGarcía-Munguía, Argelia, Paloma Lucía Guerra-Ávila, Efraín Islas-Ojeda, Jorge Luis Flores-Sánchez, Otilio Vázquez-Martínez, Alberto Margarito García-Munguía, and Otilio García-Munguía. 2024. "A Review of Drone Technology and Operation Processes in Agricultural Crop Spraying" Drones 8, no. 11: 674. https://doi.org/10.3390/drones8110674
APA StyleGarcía-Munguía, A., Guerra-Ávila, P. L., Islas-Ojeda, E., Flores-Sánchez, J. L., Vázquez-Martínez, O., García-Munguía, A. M., & García-Munguía, O. (2024). A Review of Drone Technology and Operation Processes in Agricultural Crop Spraying. Drones, 8(11), 674. https://doi.org/10.3390/drones8110674