Improved Grey Wolf Algorithm: A Method for UAV Path Planning
Abstract
:1. Introduction
1.1. Related Work
1.2. Paper Contribution
2. UAV Path planning Model
2.1. Environmental Model
2.1.1. Terrain Model
2.1.2. No-Fly Zone Model
2.1.3. Formation Model
2.2. Timestamp Segmentation Model
2.3. Cost Function
2.3.1. Path Length Cost
2.3.2. Threat Cost
2.3.3. Flight Characteristic Cost
2.3.4. Co-Ordination Cost
2.4. Fitness Function Modeling
3. UAV Path Planning Model Based on Improved GWO Algorithm
3.1. Grey Wolf Optimizer Algorithm
3.2. Improved Grey Wolf Optimizer Algorithm
3.3. Local Path Planning of DWA Algorithm
3.4. Algorithm Complexity Analysis
4. Experimental Simulation and Results
4.1. Experimental Environment Setup
4.2. Comparison with Existing Algorithms
4.2.1. Algorithm Performance with Different Numbers of UAVs
4.2.2. Algorithm Performance in Different Static Obstacle Scenarios
4.3. Algorithm Analysis
4.3.1. Algorithm Parameter
4.3.2. UAV Formation Generalization
4.3.3. Dynamic Obstacle Avoidance Capability
4.4. Visualization of Planned Paths
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter Name | Parameter Size |
Speed limit | (0.3 Ma~0.7 Ma) |
The angle of divergence constraint | (−60°~60°) |
Inclination constraints | (−45°~45°) |
Position x constraints | (0~1000 cubic cells) |
Position y constraints | (0~1000 cubic cells) |
Safety distance | 25 cubic cells |
Weights (0.05, 0.15, 0.70, 0.10) |
Algorithm | Parameter Size |
ABC | |
PSO | |
GWO | |
MP–GWO | |
NI–GWO |
References
- Telli, K.; Kraa, O.; Himeur, Y.; Ouamane, A.; Boumehraz, M.; Atalla, S.; Mansoor, W. A Comprehensive Review of Recent Research Trends on Unmanned Aerial Vehicles (UAVs). Systems 2023, 11, 400. [Google Scholar] [CrossRef]
- Rezaldi, M.Y.; Yoganingrum, A.; Prasetyadi, A.; Sutyawan, A.G.; Febriandirza, A.; Trianggoro, C.; Suhud, R. UAV-Assisted Heavy Metal Tracking in Oil Palm Plantations: Present Applications and Future Prospects. Remote Sens. Lett. 2024, 15, 55–65. [Google Scholar] [CrossRef]
- Nguyen, H.-T.; Ghazali, I. Trends of Unmanned Aerial Vehicles in Logistics Delivery. Bincang Sains dan Teknologi 2024, 3, 52–59. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Liu, J.; Yang, Q.; Du, Z.; Wu, Y. Evaluation of Autonomous Capability of Ground Attack UAV Based on Hierarchical Analysis Method. In Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022); Fu, W., Gu, M., Niu, Y., Eds.; Lecture Notes in Electrical Engineering; Springer Nature Singapore: Singapore, 2023; Volume 1010, pp. 1072–1081. ISBN 978-981-9904-78-5. [Google Scholar]
- Xu, H.; Li, Y.; Lin, C.; Ning, Z.; Liu, C.; Mai, B.; Deng, X.; Fan, S.; Li, J. Unveiling Vertical Ozone Variation with UAV-Based Monitoring and Modeling: A New Challenge for City-Level Ozone Pollution Control in the Pearl River Delta Region. Atmos. Environ. 2024, 322, 120368. [Google Scholar] [CrossRef]
- Wanner, D.; Hashim, H.A.; Srivastava, S.; Steinhauer, A. UAV Avionics Safety, Certification, Accidents, Redundancy, Integrity, and Reliability: A Comprehensive Review and Future Trends. Drone Syst. Appl. 2024, 12, 1–23. [Google Scholar] [CrossRef]
- Sun, J.; Yuan, G.; Song, L.; Zhang, H. Unmanned Aerial Vehicles (UAVs) in Landslide Investigation and Monitoring: A Review. Drones 2024, 8, 30. [Google Scholar] [CrossRef]
- Javed, S.; Hassan, A.; Ahmad, R.; Ahmed, W.; Ahmed, R.; Saadat, A.; Guizani, M. State-of-the-Art and Future Research Challenges in UAV Swarms. IEEE Internet Things J. 2024, 11, 19023–19045. [Google Scholar] [CrossRef]
- Shi, Z.; Zhou, X.; Zhang, J.; Zhang, A.; Shi, G.; Yang, Q. UAV Trajectory Prediction Based on Flight State Recognition. IEEE Trans. Aerosp. Electron. Syst. 2022, 60, 2629–2641. [Google Scholar]
- Shi, Z.; Zhang, J.; Shi, G.; Ji, L.; Wang, D.; Wu, Y. Design of a UAV Trajectory Prediction System Based on Multi-Flight Modes. Drones 2024, 8, 255. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Zhang, K.; Zhou, X. Research on Threat Assessment Method of Formation Cooperative Combat in a Complex Environment. In Proceedings of the 2023 8th International Conference on Computational Intelligence and Applications (ICCIA); IEEE: Haikou, China, 2023; pp. 59–63. [Google Scholar]
- Li, W.; Shi, F.; Zhang, W.; Liu, Y.; Zhao, Y.; Wang, Z. A Review of Manned/Unmanned Aerial Vehicle Cooperative Technology and Application in U.S. Military. Int. J. Adv. Netw. Monit. Controls 2024, 9, 100–107. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Su, X.; Wang, L.; Lu, C.; Peng, H.; Liu, J. Deep Reinforcement Learning-Based Air Combat Maneuver Decision-Making: Literature Review, Implementation Tutorial and Future Direction. Artif. Intell. Rev. 2024, 57, 1. [Google Scholar] [CrossRef]
- Luo, J.; Tian, Y.; Wang, Z. Research on Unmanned Aerial Vehicle Path Planning. Drones 2024, 8, 51. [Google Scholar] [CrossRef]
- Bashir, N.; Boudjit, S.; Dauphin, G.; Zeadally, S. An Obstacle Avoidance Approach for UAV Path Planning. Simul. Model. Pract. Theory 2023, 129, 102815. [Google Scholar] [CrossRef]
- Mazaheri, H.; Goli, S.; Nourollah, A. A Survey of 3D Space Path-Planning Methods and Algorithms. ACM Comput. Surv. 2024, 57, 3673896. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, C.; Xia, Y.; Xiong, H.; Shao, X. An Improved Artificial Potential Field Method for Path Planning and Formation Control of the Multi-UAV Systems. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 1129–1133. [Google Scholar] [CrossRef]
- Rutenbar, R.A. Simulated Annealing Algorithms: An Overview. IEEE Circuits Devices Mag. 1989, 5, 19–26. [Google Scholar] [CrossRef]
- Li, X.; Tong, Y. Path Planning of a Mobile Robot Based on the Improved RRT Algorithm. Appl. Sci. 2023, 14, 25. [Google Scholar] [CrossRef]
- Nasir, J.; Islam, F.; Ayaz, Y. Adaptive Rapidly-Exploring-Random-Tree-Star (RRT*) -Smart: Algorithm Characteristics and Behavior Analysis in Complex Environments. Asia-Pac. J. Inf. Technol. Multimed. 2013, 02, 39–51. [Google Scholar] [CrossRef]
- Zhang, C.; Zhen, Z.; Wang, D.; Li, M. UAV Path Planning Method Based on Ant Colony Optimization. In Proceedings of the 2010 Chinese Control and Decision Conference; IEEE: Xuzhou, China, 2010; pp. 3790–3792. [Google Scholar]
- Karaboga, D.; Akay, B. A Comparative Study of Artificial Bee Colony Algorithm. Appl. Math. Comput. 2009, 214, 108–132. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, X.; Li, W.; Liu, C.; Ye, Q.; Liang, P. AAPF*: A Safer Autonomous Vehicle Path Planning Algorithm Based on the Improved A* Algorithm and APF Algorithm. Clust. Comput. 2024, 27, 11393–11406. [Google Scholar] [CrossRef]
- Deng, M.; Yang, Q.; Peng, Y. A Real-Time Path Planning Method for Urban Low-Altitude Logistics UAVs. Sensors 2023, 23, 7472. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Patle, B.K.; Sanap, S. A Systematic Review on Metaheuristic Approaches for Autonomous Path Planning of Unmanned Aerial Vehicles. Drone Syst. Appl. 2024, 12, 1–28. [Google Scholar] [CrossRef]
- Noreen, I.; Khan, A.; Habib, Z. Optimal Path Planning Using RRT* Based Approaches: A Survey and Future Directions. Int. J. Adv. Comput. Sci. Appl. 2016, 11. [Google Scholar] [CrossRef]
- Aslan, M.F.; Durdu, A.; Sabanci, K. Goal Distance-Based UAV Path Planning Approach, Path Optimization and Learning-Based Path Estimation: GDRRT*, PSO-GDRRT* and BiLSTM-PSO-GDRRT*. Appl. Soft Comput. 2023, 137, 110156. [Google Scholar] [CrossRef]
- Yildiz, B.; Aslan, M.F.; Durdu, A.; Kayabasi, A. Consensus-Based Virtual Leader Tracking Swarm Algorithm with GDRRT*-PSO for Path-Planning of Multiple-UAVs. Swarm Evol. Comput. 2024, 88, 101612. [Google Scholar] [CrossRef]
- Yang, F.; Wang, P.; Zhang, Y.; Zheng, L.; Lu, J. Survey of Swarm Intelligence Optimization Algorithms. In Proceedings of the 2017 IEEE International Conference on Unmanned Systems (ICUS); IEEE: Beijing, China, 2017; pp. 544–549. [Google Scholar]
- Zhang, J.; Zhu, X.; Li, J. Intelligent Path Planning with an Improved Sparrow Search Algorithm for Workshop UAV Inspection. Sensors 2024, 24, 1104. [Google Scholar] [CrossRef]
- Prity, F.S.; Uddin, K.M.A.; Nath, N. Exploring Swarm Intelligence Optimization Techniques for Task Scheduling in Cloud Computing: Algorithms, Performance Analysis, and Future Prospects. Iran J. Comput. Sci. 2024, 7, 337–358. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Global Path Planning for Multiple AUVs Using GWO. Arch. Control Sci. 2023, 30, 77–100. [CrossRef]
- Bansal, J.C.; Singh, P.K.; Pal, N.R. (Eds.) Evolutionary and Swarm Intelligence Algorithms; Studies in Computational Intelligence; Springer International Publishing: Cham, Switzerland, 2019; Volume 779, ISBN 978-3-319-91339-1. [Google Scholar]
- Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary Grey Wolf Optimization Approaches for Feature Selection. Neurocomputing 2016, 172, 371–381. [Google Scholar] [CrossRef]
- Radmanesh, M.; Kumar, M.; Sarim, M. Grey Wolf Optimization Based Sense and Avoid Algorithm in a Bayesian Framework for Multiple UAV Path Planning in an Uncertain Environment. Aerosp. Sci. Technol. 2018, 77, 168–179. [Google Scholar] [CrossRef]
- Zhao, D.; Cai, G.; Wang, Y.; Li, X. Path Planning of Obstacle-Crossing Robot Based on Golden Sine Grey Wolf Optimizer. Appl. Sci. 2024, 14, 1129. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, N.; Wang, X.; Li, M. A Hybrid Algorithm Based on Grey Wolf Optimizer and Differential Evolution for UAV Path Planning. Expert Syst. Appl. 2023, 215, 119327. [Google Scholar] [CrossRef]
- Rao, C.; Wang, Z.; Shao, P. A Multi-Strategy Collaborative Grey Wolf Optimization Algorithm for UAV Path Planning. Electronics 2024, 13, 2532. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Q.; Han, D.; Jiang, H. UAV Path Planning: Integration of Grey Wolf Algorithm and Artificial Potential Field. Concurr. Comput. Pract. Exp. 2024, 36, e8120. [Google Scholar] [CrossRef]
- Sun, Y.; Lv, B.; Yang, H.; Li, X. Multi-UAV Trajectory Planning Based on Improved Multi-Population Grey Wolf Optimizer Algorithm. In Proceedings of the 2024 36th Chinese Control and Decision Conference (CCDC); IEEE: Xi’an, China, 2024; pp. 6142–6148. [Google Scholar]
- Ogren, P.; Leonard, N.E. A Convergent Dynamic Window Approach to Obstacle Avoidance. IEEE Trans. Robot. 2005, 21, 188–195. [Google Scholar] [CrossRef]
- Bes, J.; Dendarieta, J.; Riazuelo, L.; Montano, L. DWA-3D: A Reactive Planner for Robust and Efficient Autonomous UAV Navigation. arXiv 2024, arXiv:2409.05421. [Google Scholar]
- Wang, W. Path Planning of UAV Crossing Dense Obstacle Area Based on Improved Dynamic Window Approach. In Proceedings of the 2023 5th International Conference on Electronic Engineering and Informatics (EEI), Wuhan, China, 23–25 June 2023. [Google Scholar]
- Li, P.; Hao, L.; Zhao, Y.; Lu, J. Robot Obstacle Avoidance Optimization by A* and DWA Fusion Algorithm. PLoS ONE 2024, 19, e0302026. [Google Scholar] [CrossRef]
- Gong, J.; Chang, T.-H.; Shen, C.; Chen, X. Flight Time Minimization of UAV for Data Collection over Wireless Sensor Networks. IEEE J. Sel. Areas Commun. 2018, 36, 1942–1954. [Google Scholar] [CrossRef]
- Alkouz, B.; Bouguettaya, A. Formation-Based Selection of Drone Swarm Services. In Proceedings of the MobiQuitous 2020-17th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Darmstadt, Germany, 7–9 December 2020. [Google Scholar]
- Phung, M.D.; Ha, Q.P. Safety-Enhanced UAV Path Planning with Spherical Vector-Based Particle Swarm Optimization. Appl. Soft Comput. 2021, 107, 107376. [Google Scholar] [CrossRef]
- Han, D.; Yu, Q.; Jiang, H.; Chen, Y.; Zhu, X.; Wang, L. Three-Dimensional Path Planning for Post-Disaster Rescue UAV by Integrating Improved Grey Wolf Optimizer and Artificial Potential Field Method. Appl. Sci. 2024, 14, 4461. [Google Scholar] [CrossRef]
- Feng, J.; Sun, C.; Zhang, J.; Du, Y.; Liu, Z.; Ding, Y. A UAV Path Planning Method in Three-Dimensional Space Based on a Hybrid Gray Wolf Optimization Algorithm. Electronics 2023, 13, 68. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, Z.; Yan, T.; Bai, Y. Dynamic Task Allocation for Heterogeneous Multi-UAVs in Uncertain Environments Based on 4DI-GWO Algorithm. Drones 2024, 8, 236. [Google Scholar] [CrossRef]
- Xue, Y.; Jiang, J.; Zhao, B.; Ma, T. A Self-Adaptive Artificial Bee Colony Algorithm Based on Global Best for Global Optimization. Soft Comput. 2018, 22, 2935–2952. [Google Scholar] [CrossRef]
- Meng, Q.; Qu, Q.; Chen, K.; Yi, T. Multi-UAV Path Planning Based on Cooperative Co-Evolutionary Algorithms with Adaptive Decision Variable Selection. Drones 2024, 8, 435. [Google Scholar] [CrossRef]
Algorithms | Limitations |
---|---|
Metaheuristic algorithm | Prone to getting trapped in local optima. |
Sampling-based methods | High memory consumption and slow convergence rates as the search space expands. |
Swarm intelligence optimisation algorithm | The parameters are susceptible, convergence is slow, and additional iterations may be required to ensure convergence. |
UAV Count | ABC | PSO | GWO | MP–GWO | NI–GWO | |
---|---|---|---|---|---|---|
11 | Average path length | 1303.48 | 1227.46 | 1203.40 | 1125.30 | 1095.43 |
Average runtime (s) | 4542.12 | 4003.4 | 3316.16 | 3583.52 | 3113.67 | |
Average no-fly zone crossings | 0.19 | 0.17 | 0.04 | 0.03 | 0.01 | |
Average number of collisions | 0.21 | 0.19 | 0.23 | 0.02 | 0.05 | |
15 | Average path length | 1365.98 | 1320.64 | 1160.35 | 1117.56 | 1018.34 |
Average runtime (s) | 4735.01 | 4353.68 | 4090.96 | 4372.78 | 3189.37 | |
Average no-fly zone crossings | 0.35 | 0.48 | 0.07 | 0.09 | 0.04 | |
Average number of collisions | 0.32 | 0.28 | 0.24 | 0.13 | 0.03 | |
19 | Average path length | 1393.48 | 1372.46 | 1249.71 | 1275.93 | 1209.23 |
Average runtime (s) | 6080.17 | 5895.43 | 3797.02 | 5741.34 | 4442.91 | |
Average no-fly zone crossings | 0.62 | 0.56 | 0.65 | 0.56 | 0.25 | |
Average number of collisions | 0.51 | 0.46 | 0.63 | 0.26 | 0.10 |
UAV Count | ABC | PSO | GWO | MP–GWO | NI–GWO | |
11 | Average path length | 1401.23 | 1399.02 | 1318.92 | 1469.65 | 1178.80 |
Average runtime (s) | 5934.12 | 5732.01 | 5730.73 | 5899.78 | 4042.68 | |
Average no-fly zone crossings | 0.45 | 0.51 | 0.19 | 0.11 | 0.06 | |
Average number of collisions | 0.42 | 0.39 | 0.38 | 0.26 | 0.05 | |
15 | Average path length | 1422.06 | 1421.01 | 1399.15 | 1479.32 | 1208.65 |
Average runtime (s) | 6722.76 | 6123.25 | 5984.46 | 6514.98 | 6001.99 | |
Average no-fly zone crossings | 0.66 | 0.59 | 0.57 | 0.45 | 0.17 | |
Average number of collisions | 0.60 | 0.51 | 0.45 | 0.33 | 0.12 | |
19 | Average path length | 1471.56 | 1450.09 | 1444.32 | 1499.66 | 1352.49 |
Average runtime (s) | 8243.68 | 7777.19 | 6203.58 | 7801.10 | 6101.55 | |
Average no-fly zone crossings | 0.78 | 0.66 | 0.63 | 0.59 | 0.19 | |
Average number of collisions | 0.68 | 0.59 | 0.47 | 0.41 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Shi, G.; Zhang, J. Improved Grey Wolf Algorithm: A Method for UAV Path Planning. Drones 2024, 8, 675. https://doi.org/10.3390/drones8110675
Zhou X, Shi G, Zhang J. Improved Grey Wolf Algorithm: A Method for UAV Path Planning. Drones. 2024; 8(11):675. https://doi.org/10.3390/drones8110675
Chicago/Turabian StyleZhou, Xingyu, Guoqing Shi, and Jiandong Zhang. 2024. "Improved Grey Wolf Algorithm: A Method for UAV Path Planning" Drones 8, no. 11: 675. https://doi.org/10.3390/drones8110675
APA StyleZhou, X., Shi, G., & Zhang, J. (2024). Improved Grey Wolf Algorithm: A Method for UAV Path Planning. Drones, 8(11), 675. https://doi.org/10.3390/drones8110675