High-Order Disturbance Observer-Based Fuzzy Fixed-Time Safe Tracking Control for Uncertain Unmanned Helicopter with Partial State Constraints and Multisource Disturbances
Abstract
:1. Introduction
- In order to keep partial states of the unmanned helicopter system within the time-varying safety boundary, the desired safety signals are constructed by SPA, which avoids the disadvantages of traditional BLF and PPC, indirectly constrains the state through constraint state errors and eliminates the assumption of feasibility conditions. In addition, second-order DSC is used to make the desired safety signals continuously differentiable.
- Compared with asymptotic stability control and finite-time stability theory, the fixed-time stability theory ensures that the controlled unmanned helicopter system is semi-globally fixed-time stable in probability, and the convergence time of the system only depends on the devised parameters. Moreover, the compensation mechanism is employed to improve the tracking performance and robustness of the controller system.
- Unlike from the existing DO and FTDO in [43], the developed HODO provides an unbiased estimate of the reciprocal of the external disturbances, which realizes the precise control and compensation of the external disturbances. In addition, FLS and the It differential equation are employed to handle the system uncertainties and random disturbances.
2. Necessary Preparation
2.1. Modeling of the UAH
2.2. Problem Formulation
3. Controller Design
3.1. Desired Safety Trajectory Generation
3.2. Design of the Command Filter
3.3. HODO-Based Adaptive Safety Fixed-Time Tracking Controller Design
4. Stability Analysis
5. Simulation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Assis, G.; Dos Santos, M.; Basilio, M. Use of the WASPAS method to select suitable helicoptersfor aerial activity carried out by the military police of the state of Rio de Janeiro. Axioms 2023, 12, 77. [Google Scholar] [CrossRef]
- Vu, N.; Dang, D.; Dinh, T. Electric propulsion system sizing methodology for an agriculture multicopter. Aerosp. Sci. Technol. 2019, 90, 314–326. [Google Scholar] [CrossRef]
- Caballero Morales, S.; Martinez Flores, J. Helicopter routing model with non-deterministic failure rate for evacuation of multiple oil platforms. Comput. Ind. Eng. 2020, 139, 105669. [Google Scholar] [CrossRef]
- Yeo, H. Design and aeromechanics investigation of compound helicopters. Aerosp. Sci. Technol. 2019, 88, 158–173. [Google Scholar] [CrossRef]
- Zhao, B.; Xian, B.; Zhang, Y.; Zhang, X. Nonlinear Robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Trans. Ind. Electron. 2015, 62, 2891–2902. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, R.; Zhang, K.; Jiang, B.; Tao, G. Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Trans. Ind. Electron. 2016, 63, 5044–5056. [Google Scholar] [CrossRef]
- Liu, H.; Yu, Y.; Zhong, Y. Robust trajectory tracking control for a laboratory helicopter. Nonlinear Dyn. 2014, 77, 621–634. [Google Scholar] [CrossRef]
- Yang, S. Adaptive bounding-based dynamic inversion control of a coaxial compound helicopter. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 9451–9462. [Google Scholar] [CrossRef]
- Raptics, I.; Valavanis, K.; Moreno, W. Anovel nonlinear backstepping controller design for helicopters using the rotation matrix. Irrr Trans. Control. Syst. Technol. 2011, 19, 465–473. [Google Scholar] [CrossRef]
- Glida, H.; Abdou, L.; Chelihi, A.; Sentouh, C.; Hasseni, S. Optimal model-free backstepping control for a quadrotor helicopter. Nonlinear Dyn. 2020, 100, 3449–3468. [Google Scholar] [CrossRef]
- Labbadi, M.; Cherkaoui, M. Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerosp. Sci. Technol. 2019, 93, 105306. [Google Scholar] [CrossRef]
- He, W.; Mu, X.; Zhang, L.; Zou, Y. Modeling and trajectory tracking control for flapping-wing micro aerial vehicles. IEEE-Caa J. Autom. Sin. 2021, 8, 148–156. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Ahn, C.; Xiang, Z. Decentralized event-triggered adaptive fuzzy control for nonlinear switched large-scale systems with input delay via command-filtered backstepping. IEEE Trans. Fuzzy Syst. 2022, 30, 2118–2123. [Google Scholar] [CrossRef]
- Xu, B.; Ma, Q.; Feng, J.; Zhang, J. Fault tolerant control of drone interceptors using command filtered backstepping and fault weighting dynamic control allocation. Drones 2023, 7, 106. [Google Scholar] [CrossRef]
- Mullen, J.; Bailey, S.; Hoagg, J. Filtered dynamic inversion for altitude control of fixed-wing unmanned air vehicles. Aerosp. Sci. Technol. 2016, 54, 241–252. [Google Scholar] [CrossRef]
- Omar, H. Designing anti-swing fuzzy controller for helicopter slung-load system near hover by particle swarms. Aerosp. Sci. Technol. 2013, 29, 223–234. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, Y.; Li, S.; Zhou, Y. Fuzzy controller design of micro-unmanned helicopter relying on improved genetic optimization algorithm. Aerosp. Sci. Technol. 2020, 98, 105685. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J. Event-triggered fuzzy flight control of a two-degree-of-freedom helicopter system. IEee Trans. Fuzzy Syst. 2021, 29, 2949–2962. [Google Scholar] [CrossRef]
- Cai, X.; Shi, K.; She, K.; Zhong, S.; Soh, Y.C.; Yu, Y. Performance error estimation and elastic integral event triggering mechanism design for T-S fuzzy networked control system under DoS attacks. IEEE Trans. Fuzzy Syst. 2023, 31, 1327–1339. [Google Scholar] [CrossRef]
- Song, X.; Wu, C.; Song, S.; Stojanovic, V.; Tejado, I. Fuzzy wavelet neural adaptive finite-time self-triggered fault-tolerant control for a quadrotor unmanned aerial vehicle with scheduled performance. Eng. Appl. Artif. Intell. 2024, 131, 107832. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, J.; Chadli, M.; Xiang, Z. Distributed adaptive fuzzy formation control of uncertain multiple unmanned aerial vehicles with actuator faults and switching topologies. IEEE Trans. Fuzzy Syst. 2023, 31, 919–929. [Google Scholar] [CrossRef]
- Fang, X.; Wu, A.; Shang, Y.; Dong, N. A novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbances. Nonlinear Dyn. 2016, 83, 1053–1068. [Google Scholar] [CrossRef]
- Wang, N.; Tao, F.; Fu, Z.; Song, S. Adaptive fuzzy control for a class of stochastic strict feedback high-order nonlinear systems with full-state constraints. IEEE Trans. Syst. Man-Cybern.-Syst. 2022, 52, 205–213. [Google Scholar] [CrossRef]
- Chen, M.; Shi, P.; Lim, C. Adaptive neural fault-tolerant control of a 3-DOF model helicopter system. IEEE Trans. Syst. Man-Cybern.-Syst. 2016, 46, 260–270. [Google Scholar] [CrossRef]
- He, W.; Yan, Z.; Sun, C.; Chen, Y. Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer. IEEE Trans. Cybern. 2017, 47, 3452–3465. [Google Scholar] [CrossRef]
- Wan, M.; Chen, M.; Yong, K. Adaptive tracking control for an unmanned autonomous helicopter using neural neural network and disturbance observer. Neurocomputing 2021, 468, 296–305. [Google Scholar] [CrossRef]
- Li, M.; Wu, Z.; Deng, F.; Guo, B. Active disturbance rejection control to consensus of second-order stochastic multiagent systems. IEEE Trans. Control. Netw. Syst. 2023, 10, 993–1004. [Google Scholar] [CrossRef]
- Kuznetsov, D. Development and application of the fourier method for the numerical solution of Ito stochastic differential equations. Comput. Math. Math. Phys. 2018, 58, 1058–1070. [Google Scholar] [CrossRef]
- Chen, B.; Wu, C. Robust scheduling filter design for a class of nonlinear stochastic Poisson signal systems. IEEE Trans. Signal Process. 2015, 63, 6245–6257. [Google Scholar] [CrossRef]
- Altan, A.; Hacioglu, R. Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances. Mech. Syst. Signal Process. 2020, 138, 106548. [Google Scholar] [CrossRef]
- Hu, W.; Quan, J.; Ma, X.; Salah, M.; Shaker, A. Analytical design of optimal model predictive control and its application in small-scale helicopters. Mathetatics 2023, 11, 1845. [Google Scholar] [CrossRef]
- Kalabic, U.; Li, N.; Vermillion, C.; Kolmanovsky, I. Peference governors for chance-constrained systems. Automatica 2019, 109, 108500. [Google Scholar] [CrossRef]
- Borrelli, F.; Falcone, P.; Pekar, J.; Stewart, G. Reference governor for constrained piecewise affine systems. J. Process. Control. 2009, 19, 1229–1237. [Google Scholar] [CrossRef]
- Yan, K.; Wu, Q. Adaptive tracking flight control for unmanned autonomous helicopter with full state constraints and actuator faults. AeRospace Sci. Technol. 2022, 128, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Dai, P.; Yan, B.; Han, T.; Liu, S. Barrier lyapunov function based model predictive control of a morphing waverider with input saturation and full-state constraints. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 3071–3081. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Ding, W. Global output-feedback prescribed performance control of nonlinear systems with unknown virtual control coefficients. IEEE Trans. Autom. Control. 2022, 67, 6904–6911. [Google Scholar] [CrossRef]
- Bu, X.; Jiang, B.; Lei, H. Nonfragile Quantitative prescribed performance control of waverider vehicles with actuator saturation. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3538–3548. [Google Scholar] [CrossRef]
- Verginis, C.; Bechlioulis, C.; Soldatos, A.; Tsipianitis, D. Robust trajectory tracking control for uncertain 3-DOF helicopter with prescribed performance. IEEE-Asme Trans. Mechatronics 2022, 27, 3559–3569. [Google Scholar] [CrossRef]
- Ma, H.; Chen, M.; Feng, G.; Wu, Q. Adaptive fuzzy tracking control for unmanned autonomous helicopter with flight boundary constraints. IEEE Trans. Fuzzy Syst. 2023, 31, 184–198. [Google Scholar] [CrossRef]
- Liu, X.; Liao, X. Fixed-time stabilization control for port-Hamiltonian systems. Nonlinear Dyn. 2019, 96, 1497–1509. [Google Scholar] [CrossRef]
- Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control. 2011, 57, 2106–2110. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, F.; Liu, Z.; Zhang, Y.; Chen, C. Fixed-time fuzzy control for a class of nonlinear systems. IEEE Trans. Cybern. 2022, 52, 3880–3887. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Ren, R.; Tao, F.; Fu, Z.; Wang, N. FTDO-based adaptive fuzzy fixed-time tracking control for uncertain unmanned helicopter with output constraints. Aerosp. Sci. Technol. 2023, 147, 109019. [Google Scholar] [CrossRef]
- Liu, S.; Niu, B.; Zong, G.; Zhao, X.; Xu, N. Adaptive fixed-time hierarchical sliding mode control for switched under-actuated systems with dead-zone constraints via event-triggered strategy. Appl. Math. Comput. 2022, 435, 127441. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Y.; Hou, Z. Adaptive fixed-time tracking control for stochastic pure-feedback nonlinear systems. Int. J. Adapt. Control. Signal Process. 2021, 35, 1712–1731. [Google Scholar] [CrossRef]
Symbol | Value | Unit |
---|---|---|
g | ||
m | ||
Symbol | Value | Unit |
---|---|---|
0 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, R.; Wang, Z.; Ma, H.; Ji, B.; Tao, F. High-Order Disturbance Observer-Based Fuzzy Fixed-Time Safe Tracking Control for Uncertain Unmanned Helicopter with Partial State Constraints and Multisource Disturbances. Drones 2024, 8, 679. https://doi.org/10.3390/drones8110679
Ren R, Wang Z, Ma H, Ji B, Tao F. High-Order Disturbance Observer-Based Fuzzy Fixed-Time Safe Tracking Control for Uncertain Unmanned Helicopter with Partial State Constraints and Multisource Disturbances. Drones. 2024; 8(11):679. https://doi.org/10.3390/drones8110679
Chicago/Turabian StyleRen, Ruonan, Zhikai Wang, Haoxiang Ma, Baofeng Ji, and Fazhan Tao. 2024. "High-Order Disturbance Observer-Based Fuzzy Fixed-Time Safe Tracking Control for Uncertain Unmanned Helicopter with Partial State Constraints and Multisource Disturbances" Drones 8, no. 11: 679. https://doi.org/10.3390/drones8110679
APA StyleRen, R., Wang, Z., Ma, H., Ji, B., & Tao, F. (2024). High-Order Disturbance Observer-Based Fuzzy Fixed-Time Safe Tracking Control for Uncertain Unmanned Helicopter with Partial State Constraints and Multisource Disturbances. Drones, 8(11), 679. https://doi.org/10.3390/drones8110679