Multi-Rotor Drone-Based Thermal Target Tracking with Track Segment Association for Search and Rescue Missions
Abstract
:1. Introduction
2. Multiple-Target Tracking
2.1. System Modeling
2.2. Track Initialization
2.3. Measurement–Track Association with Forward Filtering
2.3.1. Multi-Mode Interaction
2.3.2. Mode-Matched Kalman Filtering with the Nearest Neighbor Measurement
2.3.3. Track Update
2.4. Track–Track Association at the Same Time (Track Association and Fusion)
2.5. Track–Track Association at Different Times (Track Segment Association)
2.5.1. Candidate Track Pairs
2.5.2. Backward Filtering
2.5.3. Association Testing and Assignment Rule
2.6. Track Termination with Validation Testing
3. Results
3.1. Video Description and Thermal Object Detection
3.2. Thermal Target Tracking
3.2.1. System Configuration
3.2.2. Evaluation of Tracking Performance
3.2.3. TSA Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Alzahrani, B.; Oubbati, O.S.; Barnawi, A.; Atiquzzaman, M.; Alghazzawi, D. UAV assistance paradigm: State-of-the-art in applications and challenges. J. Netw. Comput. Appl. 2020, 166, 102706. [Google Scholar] [CrossRef]
- Osmani, K.; Schulz, D. Comprehensive Investigation of Unmanned Aerial Vehicles (UAVs): An In-Depth Analysis of Avionics Systems. Sensors 2024, 24, 3064. [Google Scholar] [CrossRef] [PubMed]
- Vohra, D.; Garg, P.; Ghosh, S. Usage of Uavs/Drones Based on Their Categorisation: A Review. J. Aerosp. Sci. Technol. 2023, 74, 90–101. [Google Scholar] [CrossRef]
- Cao, Y.; Qi, F.; Jing, Y.; Zhu, M.; Lei, T.; Li, Z.; Xia, J.; Wang, J. Mission Chain Driven Unmanned Aerial Vehicle Swarms Cooperation for the Search and Rescue of Outdoor Injured Human Targets. Drones 2022, 6, 138. [Google Scholar] [CrossRef]
- Choi, H.-W.; Kim, H.-J.; Kim, S.-K.; Na, W.S. An Overview of Drone Applications in the Construction Industry. Drones 2023, 7, 515. [Google Scholar] [CrossRef]
- Sekeroglu, B.; Tuncal, K. Image Processing in Unmanned Aerial Vehicles. In Unmanned Aerial Vehicles in Smart Cities. Unmanned System Technologies; Al-Turjman, F., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Li, K.W.; Peng, L. Flight Information Access When Operating a Small Drone. In Proceedings of the 2023 4th International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Nanjing, China, 25–27 August 2023; pp. 28–32. [Google Scholar] [CrossRef]
- Zhan, W.; Sun, C.; Wang, M.; She, J.; Zhang, Y.; Zhang, Z.; Sun, Y. An improved Yolov5 real-time detection method for small objects captured by UAV. Soft Comput. 2022, 26, 361–373. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, W.; Sun, C.; He, R.; Zhang, Y. HSP-YOLOv8: UAV Aerial Photography Small Target Detection Algorithm. Drones 2024, 8, 453. [Google Scholar] [CrossRef]
- Li, C.; Zhao, W.; Zhao, L.; Ju, L.; Zhang, H. Application of fuzzy logic control theory combined with target tracking algorithm in unmanned aerial vehicle target tracking. Sci. Rep. 2024, 14, 18506. [Google Scholar] [CrossRef]
- Chai, J.; He, S.; Shin, H.-S.; Tsourdos, A. Topologica-knowledge-aided airborne ground moving targets tracking. Aerosp. Sci. Technol. 2024, 144, 108807. [Google Scholar] [CrossRef]
- Anastasiou, A.; Makrigiorgis, R.; Kolios, P.; Panayiotou, C. Hyperion: A Robust Drone-based Target Tracking System. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 927–933. [Google Scholar] [CrossRef]
- Dang, Z.; Sun, X.; Sun, B.; Guo, R.; Li, C. OMCTrack: Integrating Occlusion Perception and Motion Compensation for UAV Multi-Object Tracking. Drones 2024, 8, 480. [Google Scholar] [CrossRef]
- Tan, L.; Huang, X.; Lv, X.; Jiang, X.; Liu, H. Strong Interference UAV Motion Target Tracking Based on Target Consistency Algorithm. Electronics 2023, 12, 1773. [Google Scholar] [CrossRef]
- Al Mdfaa, M.; Kulathunga, G.; Klimchik, A. 3D-SiamMask: Vision-Based Multi-Rotor Aerial-Vehicle Tracking for a Moving Object. Remote Sens. 2022, 14, 5756. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, B.; Dang, R.; Wang, Z.; Li, W.; Sun, K. Design of Dynamic Multi-Obstacle Tracking Algorithm for Intelligent Vehicle. World Electr. Veh. J. 2023, 14, 39. [Google Scholar] [CrossRef]
- Kim, M.; Memon, S.A.; Shin, M.; Son, H. Dynamic based trajectory estimation and tracking in an uncertain environment. Expert Syst. Appl. 2021, 177, 114919. [Google Scholar] [CrossRef]
- Liang, J.; Yu, X.; Zou, Y. Implementation of multiple object tracking for tracking pedestrians. In Proceedings of the SPIE 12346, 2nd International Conference on Information Technology and Intelligent Control (CITIC 2022), Kunming, China, 15–17 July 2022; pp. 67–76. [Google Scholar] [CrossRef]
- Koundinya, P.N.; Sanjukumar, N.; Rajalakshmi, P. A Comparative analysis of Algorithms for Pedestrian Tracking using Drone Vision. In Proceedings of the 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur, Malaysia, 24–26 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Li, S.; Wang, H.; Wen, S.; Li, F. Thermal Infrared-Image-Enhancement Algorithm Based on Multi-Scale Guided Filtering. Fire 2024, 7, 192. [Google Scholar] [CrossRef]
- Yuan, D.; Zhang, H.; Shu, X.; Liu, Q.; Chang, X.; He, Z.; Shi, G. Thermal Infrared Target Tracking: A Comprehensive Review. IEEE Trans. Instrum. Meas. 2024, 73, 5000419. [Google Scholar] [CrossRef]
- Levin, E.; Zarnowski, A.; McCarty, J.L.; Bialas, J.; Banaszek, A.; Banaszek, S. Feasibility Study of Inexpensive Thermal Sensor and Small UAS Deployment for Living Human Detection in Rescue Missions Application Scenario. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016 XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016; Volume XLI-B8. [Google Scholar]
- Vincent-Lambert, C.; Pretorius, A.; Van Tonder, B. Use of Unmanned Aerial Vehicles in Wilderness Search and Rescue Operations: A Scoping Review. Wilderness Environ. Med. 2023, 34, 580–588. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Messina, G.; Modica, G. Applications of UAV Thermal Imagery in Precision Agriculture: State of the Art and Future Research Outlook. Remote Sens. 2020, 12, 1491. [Google Scholar] [CrossRef]
- Larsen, H.L.; Møller-Lassesen, K.; Enevoldsen, E.M.E.; Madsen, S.B.; Obsen, M.T.; Povlsen, P.; Bruhn, D.; Pertoldi, C.; Pagh, S. Drone with Mounted Thermal Infrared Cameras for Monitoring Terrestrial Mammals. Drones 2023, 7, 680. [Google Scholar] [CrossRef]
- Giitsidis, T.; Karakasis, E.G.; Gasteratos, A.; Sirakoulis, G.C. Human and Fire Detection from High Altitude UAV Images. In Proceedings of the 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, Turku, Finland, 4–6 March 2015; pp. 309–315. [Google Scholar] [CrossRef]
- Sneha, M.; Aravindakshan, G.A.; Sayi, V.V.S.; Akshayaa, R.D.; Rathna, S.V.A.R.; Thamil, J.S.; Mithileysh, S. An Effective Drone Surveillance System Using Thermal Imaging. In Proceedings of the 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Bengaluru, India, 9–10 October 2020; pp. 477–482. [Google Scholar] [CrossRef]
- Krišto, M.; Ivasic-Kos, M.; Pobar, M. Thermal Object Detection in Difficult Weather Conditions Using YOLO. IEEE Access 2020, 8, 25459–125476. [Google Scholar] [CrossRef]
- Jiang, C.; Ren, H.; Ye, X.; Zhu, J.; Zeng, H.; Nan, Y.; Sun, M.; Ren, X.; Huo, H. Object detection from UAV thermal infrared images and videos using YOLO models. J. Appl. Earth Obs. Geoinf. 2022, 112, 102912. [Google Scholar] [CrossRef]
- Teutsch, M.; Mueller, T.; Huber, M.; Beyerer, J. Low Resolution Person Detection with a Moving Thermal Infrared Camera by Hot Spot Classification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Work-Shops, Columbus, OH, USA, 23–28 June 2014; pp. 209–216. [Google Scholar] [CrossRef]
- Leira, F.S.; Helgensen, H.H.; Johansen, T.A.; Fossen, T.I. Object detection, recognition, and tracking from UAVs using a thermal camera. J. Field Robot. 2021, 38, 242–267. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, J.; Wang, D.; Lu, H.; Ruan, X. Visible-Thermal UAV Tracking: A Large-Scale Benchmark and New Baseline. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 8876–8885. [Google Scholar]
- Yeom, S. Moving People Tracking and False Track Removing with Infrared Thermal Imaging by a Multirotor. Drones 2021, 5, 65. [Google Scholar] [CrossRef]
- Yeom, S. Thermal Image Tracking for Search and Rescue Missions with a Drone. Drones 2024, 8, 53. [Google Scholar] [CrossRef]
- Blom, H.A.P.; Bar-shalom, Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. Autom. Control 1988, 33, 780–783. [Google Scholar] [CrossRef]
- Houles, A.; Bar-Shalom, Y. Multisensor Tracking of a Maneuvering Target in Clutter. IEEE Trans. Aerosp. Electron. Syst. 1989, 25, 176–189. [Google Scholar] [CrossRef]
- Yeom, S.; Nam, D.-H. Moving Vehicle Tracking with a Moving Drone Based on Track Association. Appl. Sci. 2021, 11, 4046. [Google Scholar] [CrossRef]
- Yeom, S. Long Distance Moving Vehicle Tracking with a Multirotor Based on IMM-Directional Track Association. Appl. Sci. 2021, 11, 11234. [Google Scholar] [CrossRef]
- Yeom, S. Long Distance Ground Target Tracking with Aerial Image-to-Position Conversion and Improved Track Association. Drones 2022, 6, 55. [Google Scholar] [CrossRef]
- Yeom, S.-W.; Kirubarajan, T.; Bar-Shalom, Y. Track segment association, fine-step IMM and initialization with doppler for improved track performance. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 293–309. [Google Scholar] [CrossRef]
- Available online: https://github.com/ultralytics/yolov5 (accessed on 3 November 2024).
- Bar-Shalom, Y.; Li, X.R. Multitarget-Multisensor Tracking: Principles and Techniques; YBS Publishing: Storrs, CT, USA, 1995. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; Wiley Interscience: New York, NY, USA, 2001. [Google Scholar]
- Li, X.; Wu, L.; Niu, Y.; Ma, A. Multi-Target Association for UAVs Based on Triangular Real-Time l Sequence. Drones 2022, 6, 119. [Google Scholar] [CrossRef]
- Zhou, G.; Zhu, B.; Ye, X. Switch-Constrained Multiple-Model Algorithm for Maneuvering Target Tracking. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 4414–4433. [Google Scholar] [CrossRef]
Configurations (Unit) | Video 1 | Video 2 | ||
---|---|---|---|---|
System Modeling | Frame Interval (s) | 0.067 | ||
Pixel-to-coordinate scaling ratio (m/pixel) | 0.04 | 0.05 | ||
Process noise std. = | j = 1 | 2.5 | 0.01 | |
j = 2 | - | 1 | ||
Meas. noise std. = | 0.5 | 0.15 | ||
Track Initialization | Max. initial target speed, | 3 | ||
Measurement Association | Gate threshold, | 4 (86.5% region) | ||
Max. established target speed, | 12 | 10 | ||
Track Association and Fusion | Gate threshold, | 10 (95.6% region) | ||
Angular threshold, (degree) | 90 (INF) | |||
Track Segment Association | Min. update num. with meas. for an old track (frame) | 30 | ||
Min./Max. update num. with meas. for a young track (frame) | 15/29 | |||
Max. gap interval between tracks (frame) | 30 | |||
Gate threshold, | 10 (95.6% region) | |||
Max. Euclidean distance, | INF | 4 | ||
Track Termination | Max. consecutive frame num. without meas. (frame) | 19 | ||
Min. update num. with meas. for a valid track (frame) | 30 |
Case 1 | Case 2 | Case 3 | |
---|---|---|---|
Num. of Track Asso. and Fusion | 15 | 15 | 0 |
Num. of TSA | 4 | 0 | 0 |
Num. of Valid Tracks | 3 | 7 | 14 |
Avg. TTL | 0.998 | 0.992 | 0.996 |
Avg. MTL | 0.998 | 0.441 | 0.241 |
Avg. TP | 1 | 1 | 1 |
Case 1 | Case 2 | Case 3 | |
---|---|---|---|
Num. of Track Asso. and Fusion | 11 | 11 | 0 |
Num. of TSA | 15 | 0 | 0 |
Num. of Valid Tracks | 6 | 18 | 25 |
Avg. TTL | 0.931 | 0.905 | 0.768 |
Avg. MTL | 0.584 | 0.167 | 0.099 |
Avg. TP | 0.982 | 0.998 | 0.999 |
Track ID | Backward Updates | Backward Predictions | Statistical Distance Squared | Euclidean Distance |
---|---|---|---|---|
1 | 18 | 3 | 1.92 | 2.12 |
15 | 20 | 0.79 | 0.46 | |
2 | 15 | 6 | 1.99 | 2.44 |
3 | 18 | 3 | 1.37 | 2.10 |
Track ID | Backward Updates | Backward Predictions | Statistical Distance Squared | Euclidean Distance |
---|---|---|---|---|
1 | 20 | 1 | 0.034 | 0.534 |
18 | 3 | 0.053 | 0.550 | |
15 | 7 | 0.163 | 3.262 | |
20 | 1 | 0.011 | 0.442 | |
20 | 1 | 0.010 | 0.226 | |
20 | 1 | 0.007 | 0.375 | |
20 | 1 | 0.014 | 0.531 | |
19 | 2 | 0.009 | 0.528 | |
15 | 6 | 0.007 | 0.164 | |
2 | 20 | 1 | 0.074 | 0.503 |
20 | 1 | 0.034 | 0.233 | |
16 | 5 | 0.217 | 2.309 | |
3 | 20 | 1 | 0.045 | 0.421 |
4 | 15 | 19 | 0.110 | 0.826 |
15 | 23 | 0.017 | 1.102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeom, S. Multi-Rotor Drone-Based Thermal Target Tracking with Track Segment Association for Search and Rescue Missions. Drones 2024, 8, 689. https://doi.org/10.3390/drones8110689
Yeom S. Multi-Rotor Drone-Based Thermal Target Tracking with Track Segment Association for Search and Rescue Missions. Drones. 2024; 8(11):689. https://doi.org/10.3390/drones8110689
Chicago/Turabian StyleYeom, Seokwon. 2024. "Multi-Rotor Drone-Based Thermal Target Tracking with Track Segment Association for Search and Rescue Missions" Drones 8, no. 11: 689. https://doi.org/10.3390/drones8110689
APA StyleYeom, S. (2024). Multi-Rotor Drone-Based Thermal Target Tracking with Track Segment Association for Search and Rescue Missions. Drones, 8(11), 689. https://doi.org/10.3390/drones8110689