Precision and Efficiency in Dam Crack Inspection: A Lightweight Object Detection Method Based on Joint Distillation for Unmanned Aerial Vehicles (UAVs)
Abstract
:1. Introduction
- This paper proposes an intelligent inspection process that combines UAV patrol with object detection and constructs a dataset of UAV aerial photography images;
- We propose a novel lightweight and high-performance object detection scheme tailored to the characteristics of UAV inspection tasks.
- We propose a joint distillation method to enhance the performance of compressed models, alleviating the issue where traditional distillation methods struggle to adapt to overly compressed models.
2. Related Works
2.1. Crack Detection
2.2. Object Detection
2.3. Knowledge Distillation
3. Methods
3.1. Overall Scheme
3.2. Data Collection and Dataset Construction
3.3. Preprocessing of Remote Sensing Images
3.4. Improved YOLO_v5 Algorithm
3.4.1. Backbone
3.4.2. Gaussian Distribution Loss Function
3.4.3. Improved Feature Fusion Module
3.5. Network Slimming Based on Scaling Factors in BN Layers
3.6. Joint Feature Distillation Algorithm
3.6.1. Knowledge Distillation Based on Outputs
3.6.2. Knowledge Distillation Based on Feature Maps
4. Results
4.1. Dataset and Experimental Setup
4.2. Evaluate Metric
4.3. Comparison Experiment
4.3.1. Comparative Analysis of Object Detection Models
4.3.2. Comparative Analysis of Knowledge Distillation
4.4. Ablation Experiment
4.5. Visual Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, Z.; Chen, B.; Wu, Z.; Zhang, S. Multi-sensing investigation of crack problems for concrete dams based on detection and monitoring data: A case study. Measurement 2021, 175, 109137. [Google Scholar] [CrossRef]
- Dai, F.; Dong, W.; Huang, Z.; Zhang, X.; Wang, A.; Cao, S. Study on Shear Strength of Undisturbed Expansive Soil of Middle Route of South-to-North Water Diversion Project. Adv. Eng. Sci 2018, 50, 123–131. [Google Scholar]
- Hu, Q.; Wang, P.; Li, S.; Liu, W.; Li, Y.; Lu, W.; Kou, Y.; Wei, F.; He, P.; Yu, A. Research on Intelligent Crack Detection in a Deep-Cut Canal Slope in the Chinese South–North Water Transfer Project. Remote Sens. 2022, 14, 5384. [Google Scholar] [CrossRef]
- Zhang, Z. Drone-YOLO: An efficient neural network method for target detection in drone images. Drones 2023, 7, 526. [Google Scholar] [CrossRef]
- Nooralishahi, P.; Ibarra-Castanedo, C.; Deane, S.; López, F.; Pant, S.; Genest, M.; Avdelidis, N.P.; Maldague, X.P. Drone-based non-destructive inspection of industrial sites: A review and case studies. Drones 2021, 5, 106. [Google Scholar] [CrossRef]
- Memari, M.; Shakya, P.; Shekaramiz, M.; Seibi, A.C.; Masoum, M.A. Review on the advancements in wind turbine blade inspection: Integrating drone and deep learning technologies for enhanced defect detection. IEEE Access 2024, 12, 33236–33282. [Google Scholar] [CrossRef]
- Fernández-Hernandez, J.; González-Aguilera, D.; Rodríguez-Gonzálvez, P.; Mancera-Taboada, J. Image-based modelling from unmanned aerial vehicle (UAV) photogrammetry: An effective, low-cost tool for archaeological applications. Archaeometry 2015, 57, 128–145. [Google Scholar] [CrossRef]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Sudevan, V.; Shukla, A.; Karki, H. Current and Future Research Focus on Inspection of Vertical Structures in Oil and Gas Industry. In Proceedings of the 18th International Conference on Control, Automation and Systems (ICCAS), PyeongChang, Korea, 17–20 October 2018; pp. 144–149. [Google Scholar]
- Li, L.; Zhao, H.; Liu, R.; Nayyar, A.; Ali, R.; Li, Y.; Zhang, H. CiC-NET: A real-time semantic segmentation network for dam surface crack detection. Multimed. Tools Appl. 2024, 1–23. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, G.; Li, Y. Vison Transformer-Based Automatic Crack Detection on Dam Surface. Water 2024, 16, 1348. [Google Scholar] [CrossRef]
- Zou, Q.; Zhang, Z.; Li, Q.; Qi, X.; Wang, Q.; Wang, S. Deepcrack: Learning hierarchical convolutional features for crack detection. IEEE Trans. Image Process. 2018, 28, 1498–1512. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Poobal, S. Crack detection using image processing: A critical review and analysis. Alex. Eng. J. 2018, 57, 787–798. [Google Scholar] [CrossRef]
- Oliveira, H.; Correia, P.L. Automatic road crack detection and characterization. IEEE Trans. Intell. Transp. Syst. 2012, 14, 155–168. [Google Scholar] [CrossRef]
- Hsieh, Y.A.; Tsai, Y.J. Machine learning for crack detection: Review and model performance comparison. J. Comput. Civ. Eng. 2020, 34, 04020038. [Google Scholar] [CrossRef]
- Yokoyama, S.; Matsumoto, T. Development of an automatic detector of cracks in concrete using machine learning. Procedia Eng. 2017, 171, 1250–1255. [Google Scholar] [CrossRef]
- Nhat-Duc, H.; Nguyen, Q.L.; Tran, V.D. Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. Autom. Constr. 2018, 94, 203–213. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, E.; Shin, M.; Sim, S.H. Crack and noncrack classification from concrete surface images using machine learning. Struct. Health Monit. 2019, 18, 725–738. [Google Scholar] [CrossRef]
- Li, R.; Yuan, Y.; Zhang, W.; Yuan, Y. Unified vision-based methodology for simultaneous concrete defect detection and geolocalization. Comput. Aided Civ. Infrastruct. Eng. 2018, 33, 527–544. [Google Scholar] [CrossRef]
- Huyan, J.; Li, W.; Tighe, S.; Zhai, J.; Xu, Z.; Chen, Y. Detection of sealed and unsealed cracks with complex backgrounds using deep convolutional neural network. Autom. Constr. 2019, 107, 102946. [Google Scholar] [CrossRef]
- Maeda, H.; Sekimoto, Y.; Seto, T.; Kashiyama, T.; Omata, H. Road damage detection and classification using deep neural networks with smartphone images. Comput. Aided Civ. Infrastruct. Eng. 2018, 33, 1127–1141. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Howard, A.G. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Redmon, J. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Mandal, V.; Uong, L.; Adu-Gyamfi, Y. Automated Road Crack Detection Using Deep Convolutional Neural Networks. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 5212–5215. [Google Scholar]
- Fan, Z.; Li, C.; Chen, Y.; Wei, J.; Loprencipe, G.; Chen, X.; Di Mascio, P. Automatic crack detection on road pavements using encoder–decoder architecture. Materials 2020, 13, 2960. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Cai, Z.; Zhao, X.; Chen, C.; Liang, X.; Zou, T.; Wang, P. Pavement crack detection and recognition using the architecture of segNet. J. Ind. Inf. Integr. 2020, 18, 100144. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder–decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single Shot Multibox Detector. In Computer Vision–ECCV 2016, Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Wang, J.; Chen, Y.; Zheng, Z.; Li, X.; Cheng, M.M.; Hou, Q. CrossKD: Cross-Head Knowledge Distillation for Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 16520–16530. [Google Scholar]
- Zhao, B.; Cui, Q.; Song, R.; Qiu, Y.; Liang, J. Decoupled Knowledge Distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11953–11962. [Google Scholar]
- Shu, C.; Liu, Y.; Gao, J.; Yan, Z.; Shen, C. Channel-Wise Knowledge Distillation for Dense Prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 5311–5320. [Google Scholar]
- Liu, Z.; Wang, Y.; Chu, X.; Dong, N.; Qi, S.; Ling, H. A Simple and Generic Framework for Feature Distillation via Channel-Wise Transformation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 1129–1138. [Google Scholar]
- Mansourian, A.M.; Jalali, A.; Ahmadi, R.; Kasaei, S. Attention-guided Feature Distillation for Semantic Segmentation. arXiv 2024, arXiv:2403.05451. [Google Scholar]
- Wang, J.; Xu, C.; Yang, W.; Yu, L. A normalized Gaussian Wasserstein distance for tiny object detection. arXiv 2021, arXiv:2110.13389. [Google Scholar]
- Lau, K.W.; Po, L.M.; Rehman, Y.A.U. Large separable kernel attention: Rethinking the large kernel attention design in cnn. Expert Syst. Appl. 2024, 236, 121352. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning Efficient Convolutional Networks Through Network Slimming. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2736–2744. [Google Scholar]
- Zheng, Z.; Ye, R.; Wang, P.; Ren, D.; Zuo, W.; Hou, Q.; Cheng, M.M. Localization Distillation for Dense Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 9407–9416. [Google Scholar]
- Yang, Z.; Li, Z.; Jiang, X.; Gong, Y.; Yuan, Z.; Zhao, D.; Yuan, C. Focal and Global Knowledge Distillation for Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4643–4652. [Google Scholar]
- Yang, Z.; Li, Z.; Shao, M.; Shi, D.; Yuan, Z.; Yuan, C. Masked generative distillation. In Computer Vision–ECCV 2022, Proceedings of the 17th European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 53–69. [Google Scholar]
- Yang, G.; Tang, Y.; Li, J.; Xu, J.; Wan, X. Amd: Adaptive Masked Distillation for Object Detection. In Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 18–23 June 2023; pp. 1–8. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
Hyperparameter | Value |
---|---|
Input size | 640 × 640 |
Iterations | 250 |
Learning rate | 0.01 |
Batchsize | 32 |
Model | Pecision | Recall | Params | Gflops | ||
---|---|---|---|---|---|---|
Yolov5l | 0.81 | 0.441 | 0.798 | 0.797 | 46,108,278 | 107.6 |
Yolov5s | 0.81 | 0.441 | 0.798 | 0.797 | 46,108,278 | 107.6 |
Yolov5n | 0.785 | 0.409 | 0.784 | 0.776 | 1,760,518 | 4.1 |
Yolov7 | 0.795 | 0.42 | 0.771 | 0.79 | 36,481,772 | 103.2 |
Yolov7_tiny | 0.658 | 0.298 | 0.64 | 0.705 | 6,007,596 | 13 |
Yolov8s | 0.766 | 0.422 | 0.794 | 0.782 | 11,125,971 | 28.4 |
Yolov8n | 0.765 | 0.417 | 0.78 | 0.783 | 3,005,843 | 8.1 |
Yolov5_ns (ours) | 0.815 | 0.435 | 0.809 | 0.782 | 2,033,414 | 4.3 |
drone-Yolov5 (ours) | 0.804 | 0.410 | 0.800 | 0.770 | 725,248 | 2.1 |
Method | Pecision | Recall | ||
---|---|---|---|---|
teacher | 0.815 | 0.435 | 0.809 | 0.782 |
student | 0.786 | 0.394 | 0.763 | 0.801 |
CWD [35] | 0.796 | 0.405 | 0.782 | 0.775 |
FGD [42] | 0.791 | 0.397 | 0.775 | 0.776 |
MGD [43] | 0.794 | 0.4 | 0.78 | 0.775 |
AMD [44] | 0.785 | 0.394 | 0.76 | 0.787 |
ours | 0.804 | 0.41 | 0.8 | 0.77 |
Method | Pecision | Recall | ||
---|---|---|---|---|
Yolov5n | 0.785 | 0.409 | 0.784 | 0.776 |
Yolov5n+nwd | 0.803 | 0.41 | 0.803 | 0.768 |
Yolov5n+lska_spff | 0.796 | 0.418 | 0.787 | 0.775 |
Yolov5_ns (ours) | 0.815 | 0.435 | 0.809 | 0.782 |
Method | Pecision | Recall | ||
---|---|---|---|---|
teacher | 0.815 | 0.435 | 0.809 | 0.782 |
student | 0.786 | 0.394 | 0.763 | 0.801 |
with | 0.794 | 0.405 | 0.774 | 0.782 |
with | 0.794 | 0.401 | 0.784 | 0.775 |
with | 0.804 | 0.41 | 0.8 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Wang, N.; Fu, D.; Wei, F.; Liu, G.; Liu, B. Precision and Efficiency in Dam Crack Inspection: A Lightweight Object Detection Method Based on Joint Distillation for Unmanned Aerial Vehicles (UAVs). Drones 2024, 8, 692. https://doi.org/10.3390/drones8110692
Dong H, Wang N, Fu D, Wei F, Liu G, Liu B. Precision and Efficiency in Dam Crack Inspection: A Lightweight Object Detection Method Based on Joint Distillation for Unmanned Aerial Vehicles (UAVs). Drones. 2024; 8(11):692. https://doi.org/10.3390/drones8110692
Chicago/Turabian StyleDong, Hangcheng, Nan Wang, Dongge Fu, Fupeng Wei, Guodong Liu, and Bingguo Liu. 2024. "Precision and Efficiency in Dam Crack Inspection: A Lightweight Object Detection Method Based on Joint Distillation for Unmanned Aerial Vehicles (UAVs)" Drones 8, no. 11: 692. https://doi.org/10.3390/drones8110692
APA StyleDong, H., Wang, N., Fu, D., Wei, F., Liu, G., & Liu, B. (2024). Precision and Efficiency in Dam Crack Inspection: A Lightweight Object Detection Method Based on Joint Distillation for Unmanned Aerial Vehicles (UAVs). Drones, 8(11), 692. https://doi.org/10.3390/drones8110692