Monitoring Change and Recovery of an Embayed Beach in Response to Typhoon Storms Using UAV LiDAR
Abstract
:1. Introduction
2. Study Area and Storm Events
2.1. Study Area
2.2. Storm Events
3. Materials and Methods
3.1. Data Collection
3.2. UAV LiDAR and Field Survey
3.3. Data Processing and Accuracy Evaluation
3.4. Beach Topographical and Geomorphological Change Analysis
4. Accuracy Evaluation
4.1. Accuracy Evaluation of the UAV LiDAR Data and DEMs Products
4.2. Accuracy Evaluation of the Elevation Changes
5. Results
5.1. Beach Topographical and Geomorphological Features
5.2. Beach Morphodynamic Changes
5.2.1. Planar Changes
5.2.2. Profile Changes
5.2.3. Volume Changes
6. Discussion
6.1. Advancement of UAV LiDAR to Beach Survey
6.2. Impacts of Typhoon Storms on the Beach
6.3. Recovery Mechanism after Storms
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanley, M.E.; Hoggart, S.P.G.; Simmonds, D.J.; Bichot, A.; Colangelo, M.A.; Bozzeda, F.; Heurtefeux, H.; Ondiviela, B.; Ostrowski, R.; Recio, M.; et al. Shifting sands? Coastal protection by sand banks, beaches and dunes. Coast. Eng. 2014, 87, 136–146. [Google Scholar] [CrossRef]
- Defeo, O.; McLachlan, A.; Schoeman, D.S.; Schlacher, T.A.; Dugan, J.; Jones, A.; Lastra, M.; Scapini, F. Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci. 2009, 81, 1–12. [Google Scholar] [CrossRef]
- Carpi, L.; Bicenio, M.; Mucerino, L.; Ferrari, M. Detached breakwaters, yes or not? A modelling approach to evaluate and plan their removal. Ocean Coast. Manag. 2021, 210, 105668. [Google Scholar] [CrossRef]
- Drius, M.; Jones, L.; Marzialetti, F.; de Francesco, M.C.; Stanisci, A.; Carranza, M.L. Not just a sandy beach. The multi-service value of Mediterranean coastal dunes. Sci. Total Environ. 2019, 668, 1139–1155. [Google Scholar] [CrossRef] [PubMed]
- Robin, N.; Billy, J.; Castelle, B.; Patrick, A.H. Beach-dune Recovery from the Extreme 2013-2014 Storms Erosion at Truc Vert Beach, Southwest France: New Insights from Ground-penetrating Radar. J. Coast. Res. 2020, 95, 588–592. [Google Scholar] [CrossRef]
- Choi, E.C.; Lee, J.S.; Chang, J.I. Willingness to pay for the prevention of beach erosion in Korea: The case of Haeundae beach. Mar. Policy 2021, 132, 104667. [Google Scholar] [CrossRef]
- Williams, A.T.; Rangel-Buitrago, N.; Pranzini, E.; Anfuso, G. The management of coastal erosion. Ocean Coast. Manag. 2018, 156, 4–20. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Huang, S.Y.; Yen, J.Y.; Wu, B.L.; Shih, N.W. Field observations of sediment transport across the rocky coast of east Taiwan: Impacts of extreme waves on the coastal morphology by Typhoon Soudelor. Mar. Geol. 2020, 421, 106088. [Google Scholar] [CrossRef]
- Minamidate, K.; Goto, K.; Watanabe, M.; Roeber, V.; Toguchi, K.; Sannoh, M.; Nakashima, Y.; Kan, H. Millennial scale maximum intensities of typhoon and storm wave in the northwestern Pacific Ocean inferred from storm deposited reef boulders. Sci. Rep. 2020, 10, 7218. [Google Scholar] [CrossRef]
- Matsuba, Y.; Shimozono, T.; Tajima, Y. Extreme wave runup at the Seisho Coast during Typhoons Faxai and Hagibis in 2019. Coast. Eng. 2021, 168, 103899. [Google Scholar] [CrossRef]
- Han, M.; Yang, D.Y.; Yu, J.; Kim, J.W. Typhoon Impact on a Pure Gravel Beach as Assessed through Gravel Movement and Topographic Change at Yeocha Beach, South Coast of Korea. J. Coast. Res. Int. Forum Littoral Sci. 2017, 33, 889–906. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef] [PubMed]
- Coco, G.; Senechal, N.; Rejas, A.; Bryan, K.R.; Capo, S.; Parisot, J.P.; Brown, J.A.; MacMahan, J.H.M. Beach response to a sequence of extreme storms. Geomorphology 2014, 204, 493–501. [Google Scholar] [CrossRef]
- González-Villanueva, R.; Costas, S.; Duarte, H.; Pérez-Arluce, M.; Alejo, I. Blowout evolution in a coastal dune: Using GPR, aerial imagery and core records. J. Coast. Res. 2011, 64, 278–282. [Google Scholar]
- Díez, J.; Cohn, N.; Kaminsky, G.M.; Medina, R.; Ruggiero, P. Spatial and Temporal Variability of Dissipative Dry Beach Profiles in the Pacific Northwest, USA. J. Coast. Res. Int. Forum Littoral Sci. 2018, 34, 510–523. [Google Scholar]
- Elsner, P.; Dornbusch, U.; Thomas, I.; Amos, D.; Bovington, J.; Horn, D. Coincident beach surveys using UAS, vehicle mounted and airborne laser scanner: Point cloud inter-comparison and effects of surface type heterogeneity on elevation accuracies. Remote Sens. Environ. 2018, 208, 15–26. [Google Scholar] [CrossRef]
- Hobbs, P.; Gibson, A.; Jones, L.; Pennington, C.; Jenkins, G.; Pearson, S.; Freeborough, K. Monitoring coastal change using terrestrial LiDAR. Geol. Soc. Lond. Spec. Publ. 2010, 345, 117–127. [Google Scholar] [CrossRef]
- Dohner, S.M.; Trembanis, A.C.; Miller, D.C. A tale of three storms: Morphologic response of Broadkill Beach, Delaware, following Superstorm Sandy, Hurricane Joaquin, and Winter Storm Jonas. Shore Beach 2016, 84, 3–9. [Google Scholar]
- Pikelj, K.; Ružić, I.; Ilić, S.; James, M.R.; Kordić, B. Implementing an efficient beach erosion monitoring system for coastal management in Croatia. Ocean Coast. Manag. 2018, 156, 223–238. [Google Scholar] [CrossRef]
- Bi, S.; Zhang, Y.; Bie, J. Monitoring and analysis of beach topographic profiles in the southern Jiaodong Peninsula. Marine Sci. 2015, 39, 71–76. [Google Scholar]
- Zhu, S.B.; Li, Z.Q.; Zhang, Z.Z.; Tong, Z. Morphodynamic states of the straight beach along eastern Leizhou peninsula. Heilongjiang Water Resour. 2015, 1, 24–28. [Google Scholar]
- Sui, L.; Zhang, B. Principle and Trend of Airborne Laser Scanning Remote Sensing. J. Zhengzhou Inst. Surv. Mapp. 2006, 23, 127–129. [Google Scholar]
- Krabill, W.B.; Collins, J.G.; Link, L.E.; Swift, R.N.; Butler, M.L. Airborne laser topographic mapping results. Photogramm. Eng. Remote Sens. 1984, 50, 685–694. [Google Scholar]
- Zhao, H.J.; Shibasaki, R. International Workshop on Urban 3D/Multi-Media Mapping: UM3. J. Jpn. Soc. Photogramm. Remote Sens. 1998, 37, 74–75. [Google Scholar]
- Liu, J.N.; Zhang, X.H. Progress of Airborne Laser Scanning Altimetry. Geomat. Inf. Sci. Wuhan Univ. 2003, 28, 132–137. [Google Scholar]
- Vos, S.; Anders, K.; Kuschnerus, M.; Lindenbergh, R.; Höfle, B.; Aarninkhof, S.; de Vries, S. A high-resolution 4D terrestrial laser scan dataset of the Kijkduin beach-dune system, The Netherlands. Sci. Data 2022, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Harley, M.D.; Turner, I.L.; Short, A.D.; Ranasinghe, R. Assessment and integration of conventional, RTK-GPS and image-derived beach survey methods for daily to decadal coastal monitoring. Coast. Eng. 2011, 58, 194–205. [Google Scholar] [CrossRef]
- Murfitt, S.L.; Allan, B.M.; Bellgrove, A.; Rattray, A.; Young, M.A.; Ierodiaconou, D. Applications of unmanned aerial vehicles in intertidal reef monitoring. Sci. Rep. 2017, 7, 10259. [Google Scholar] [CrossRef] [PubMed]
- Le Mauff, B.; Juigner, M.; Ba, A.; Robin, M.; Launeau, P.; Fattal, P. Coastal monitoring solutions of the geomorphological response of beach-dune systems using multi-temporal LiDAR datasets (Vendée coast, France). Geomorphology 2018, 304, 121–140. [Google Scholar] [CrossRef]
- Shaw, L.; Helmholz, P.; Belton, D.; Addy, N. Comparison of UAV LiDAR and Imagery for Beach Monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 589–596. [Google Scholar] [CrossRef]
- Sharma, M.; Garg, R.D.; Badenko, V.; Fedotov, A.; Min, L.; Yao, A. Potential of airborne LiDAR data for terrain parameters extraction. Quat. Int. 2021, 575–576, 317–327. [Google Scholar] [CrossRef]
- Bertin, S.; Floc’h, F.; Le Dantec, N.; Jaud, M.; Cancouët, R.; Franzetti, M.; Cuq, V.; Prunier, C.; Ammann, J.; Augereau, E.; et al. A long-term dataset of topography and nearshore bathymetry at the macrotidal pocket beach of Porsmilin, France. Sci. Data 2022, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.S.; Cai, F.; Lei, G.; Cao, H.M.; Shi, F.Y. The response of three main beach types to tropical storms in South China. Mar. Geol. 2010, 275, 244–254. [Google Scholar] [CrossRef]
- White, S.A.; Wang, Y. Utilizing DEMs Derived from LiDAR Data to Analyze Morphologic Change in the North Carolina Coastline. Remote Sens. Environ. 2003, 85, 39–47. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Minderhoud, P.S.J.; Coumou, L.; Erkens, G.; Middelkoop, H.; Stouthamer, E. Mekong delta much lower than previously assumed in sea-level rise impact assessments. Nat. Commun. 2019, 10, 3847. [Google Scholar] [CrossRef] [PubMed]
- David, C.G.; Kohl, N.; Casella, E.; Rovere, A.; Ballesteros, P.; Schlurmann, T. Structure-from-Motion on Shallow Reefs and Beaches: Potential and Limitations of Consumer-Grade Drones to Reconstruct Topography and Bathymetr. Coral Reefs 2021, 40, 835–851. [Google Scholar] [CrossRef]
- Ferreira, A.T.S.; Grohmann, C.H.; Ribeiro, M.C.H.; Santos, M.S.T.; Oliveira, R.C.; Siegle, E. Beach Surface Model Construction: A Strategy Approach With Structure-from-Motion Multi-View Stereo. MethodsX 2024, 12, 102694. [Google Scholar] [CrossRef] [PubMed]
- Grohmann, C.H.; Garcia, G.P.B.; Affonso, A.A.; Albuquerque, R.W. Dune Migration and Volume Change from Airborne LiDAR, Terrestrial LiDAR and Structure from Motion-Multi View Stereo. Comput. Geosci. 2020, 143, 104569. [Google Scholar] [CrossRef]
- Xia, D.; Wang, W.; Wu, G.; Cui, J.; Li, F. Coastal Erosion in China. Acta Geogr. Sin. 1993, 48, 468–476. [Google Scholar]
- Chen, J.Y.; Xia, D.X.; Yu, Z.Y.; Cai, F. Brief Introduction of Coastal Erosion in China; Ocean Press: Beijing, China, 2010; pp. 1–405. [Google Scholar]
- Cai, F.; Qi, H.S. Brief Introduction of Chinese Beach Resources; Ocean Press: Beijing, China, 2019; pp. 1–395. [Google Scholar]
- Tong, X.; Shi, L.; Xia, X.; Chen, L.; Jiang, C. Response of sedimentary and geomorphic characteristics to 1211 typhoon on Zhejiang Huangcheng beach. Ocean Eng. 2014, 32, 84–90. [Google Scholar]
- Guo, J.L.; Shi, L.Q.; Tong, X.L.; Zheng, Y.J.; Xu, D.L. The response to tropical storm Nakri and the restoration of Dongsha Beach in Zhujiajian Island, Zhejiang Province. Haiyang Xuebao 2018, 40, 137–147. [Google Scholar]
- Shi, L.Q.; Guo, J.L.; Chen, S.L.; Chang, Y.; Zhang, D.H.; Gong, Z.H. Morphodynamic response of an embayed beach to different typhoon events with varying intensities. Acta Oceanol. Sin. 2023, 42, 51–63. [Google Scholar] [CrossRef]
- Compilation Committee of Gulf Records of China. Gulf Records of China, 5th Volume (Shanghai and the Northern Bays of Zhejiang Province); Ocean Press: Beijing, China, 1992; pp. 1–357. [Google Scholar]
- Lu, X.J.; Dong, C.M.; Li, G. Variations of typhoon frequency and landfall position in East China Sea from 1951 to 2015. Trans. Atmos. Sci. 2018, 41, 433–440. [Google Scholar]
- Urban, R.; Štroner, M.; Línková, L. A New Method for UAV Lidar Precision Testing Used for the Evaluation of an Affordable DJI ZENMUSE L1 Scanner. Remote Sens. 2021, 13, 4811. [Google Scholar]
- Lee, J.M.; Park, J.Y.; Choi, J.Y. Evaluation of Sub-aerial Topographic Surveying Techniques Using Total Station and RTK-GPS for Applications in Macrotidal Sand Beach Environment. J. Coast. Res. 2013, 65, 535–540. [Google Scholar] [CrossRef]
- Fan, Z.P. Research for network RTK real-time positioning based on Beidou CORS. Surv. World 2023, 5, 1–8. [Google Scholar]
- Hou, J.H. Application and Accuracy Analysis of SXCORS Network Based on RTK in Control Survey. Geomat. Spatia Inf. Technol. 2017, 40, 139–144. [Google Scholar]
- Li, X. Research on the application of CORS in surveying and mapping engineering. Geol. Miner. Surv. Mapp. 2020, 3, 116–117. [Google Scholar]
- LAS Committee. Common Lidar Data Exchange Format-LAS Industry Initiative. Available online: http://www.asprs.org/a/society/committees/lidar/lidar_format.html (accessed on 18 July 2023).
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Sabirova, A.; Rassabin, M.; Fedorenko, R.; Afanasyev, I. Ground Profile Recovery from Aerial 3D LiDAR-based Maps. In Proceedings of the 2019 24th Conference of Open Innovations Association (FRUCT), Moscow, Russia, 8–12 April 2019; pp. 367–374. [Google Scholar]
- Kociuba, W. Different Paths for Developing Terrestrial LiDAR Data for Comparative Analyses of Topographic Surface Changes. Appl. Sci. 2020, 10, 7409. [Google Scholar] [CrossRef]
- Bailey, G.; Li, Y.; McKinney, N.; Yoder, D.; Wright, W.; Herrero, H. Comparison of Ground Point Filtering Algorithms for High-Density Point Clouds Collected by Terrestrial LiDAR. Remote Sens. 2022, 14, 4776. [Google Scholar] [CrossRef]
- Ye, S.; Yan, F.; Zhang, Q.; Shen, D. Comparing the Accuracies of sUAV-SFM and UAV-LiDAR Point Clouds for Topographic Measurement. Arab. J. Geosci. 2022, 15, 388. [Google Scholar] [CrossRef]
- Pricope, N.G.; Halls, J.N.; Mapes, K.L.; Baxley, J.B.; Wu, J.J. Quantitative Comparison of UAS-Borne LiDAR Systems for High-Resolution Forested Wetland Mapping. Sensors 2020, 20, 4453. [Google Scholar] [CrossRef] [PubMed]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef]
- Ma, D.M.; Tian, Z.W.; Zhu, C.Q.; Wang, Y.Z. A Comprehensive Approach to Evaluate Coastal Dune Evolution in Haiyang, China. Front. Mar. Sci. 2024, 11, 1326317. [Google Scholar] [CrossRef]
- Baily, B.; Nowell, D. Techniques for monitoring coastal change: A review and case study. Ocean Coast. Manag. 1996, 32, 85–95. [Google Scholar] [CrossRef]
- Westoby, M.J.; Lim, M.; Hogg, M.; Pound, M.J.; Dunlop, L.; Woodward, J. Cost-effective erosion monitoring of coastal cliffs. Coast. Eng. 2018, 138, 152–164. [Google Scholar] [CrossRef]
- Turner, I.; Harley, M.; Short, A.; Simmons, J.; Bracs, M.; Phillips, M.; Splinter, K. A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia. Sci. Data 2016, 3, 160024. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.M.; Spencer, T. Temporal and spatial variations in recession rates and sediment release from soft rock cliffs, Suffolk coast, UK. Geomorphology 2010, 124, 26–41. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vázquez, J. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens. Environ. 2012, 123, 1–11. [Google Scholar] [CrossRef]
- Anne-Lise, M.; Joanna, B.; Jim, C. Detecting Seasonal Variations in Embryo Dune Morphology Using a Terrestrial Laser Scanner. J. Coast. Res. 2013, 65, 1313–1318. [Google Scholar]
- Feagin, R.; Williams, A.; Popescu, S.; Stukey, J.; Washington-Allen, R.; Williams, A.; Popescu, S.; Stukey, J. The Use of Terrestrial Laser Scanning (TLS) in Dune Ecosystems: The Lessons Learned. J. Coast. Res. 2014, 30, 111–119. [Google Scholar] [CrossRef]
- Pierre, G. Processes and rate of retreat of the clay and sandstone sea cliffs of the northern Boulonnais (France). Geomorphology 2006, 73, 64–77. [Google Scholar] [CrossRef]
- Kushal, A.; Ponce, J. Modeling 3D Objects from Stereo Views and Recognizing Them in Photographs. In Proceedings of the Computer Vision—ECCV 2006, Graz, Austria, 7–13 May 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 563–574. [Google Scholar]
- Lin, Y.C.; Cheng, Y.T.; Zhou, T.; Ravi, R.; Hasheminasab, S.M.; Flatt, J.E.; Troy, C.; Habib, A. Evaluation of UAV LiDAR for Mapping Coastal Environments. Remote Sens. 2019, 11, 2893. [Google Scholar] [CrossRef]
- Pitman, S.J.; Hart, D.E.; Katurji, M.H. Application of UAV techniques to expand beach research possibilities: A case study of coarse clastic beach cusps. Cont. Shelf Res. 2019, 184, 44–53. [Google Scholar] [CrossRef]
- Chen, B.J. The application of UAVs LiDAR in the topography survey of coastal flats. Chin. Sci. Technol. Period. Database (Full-Text Version) Eng. Technol. 2022, 7, 125–128. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Tian, Y.; Yin, P.; Jia, Y.G.; Liu, J.Q.; Zhu, Y.M.; Cao, K.; Chen, X.Y. Response of beach characteristics to typhoon “Yagi”: Evidence from Argus video images and on-site measurement. Marine Geology Quat. Geol. 2020, 40, 201–210. [Google Scholar]
- Dong, W.L.; Shao, J.; Wang, W.Y.; Yao, W.W. Study on the beach erosion induced by super typhoons and beach protection. J. Sediment Res. 2021, 46, 42–47. [Google Scholar]
- Hu, T.H.; Li, Z.Q.; Zhu, S.B.; Chen, R.F.; Li, G.C.; Zeng, C.H.; Zhang, H.L. Dynamic variation characteristics of beach profile along southern coast of Qiongzhou Strait. J. Appl. Oceanogr. 2021, 40, 678–687. [Google Scholar]
- Karunarathna, H.; Pender, D.; Ranasinghe, R. The effects of storm clustering on beach profile variability. Mar. Geol. 2014, 348, 103–112. [Google Scholar] [CrossRef]
- Beuzen, T.; Turner, I.L.; Blenkinsopp, C.E.; Atkinson, A.; Flocard, F.; Baldock, T.E. Physical model study of beach profile evolution by sea level rise in the presence of seawalls. Coast. Eng. 2018, 136, 172–182. [Google Scholar] [CrossRef]
- Liu, X.; Kuang, C.P.; Huang, S.C.; He, L.L.; Han, X.J. Modelling and evaluation of beach morphodynamic behavior: A case study of Dongsha Beach in eastern China. Ocean Coast. Manag. 2023, 240, 106661. [Google Scholar] [CrossRef]
- Peng, J.; Cai, F.; Li, G.Q.; Lei, G.; Huang, Y. Response characteristic to the typhoon of sandy beach on the inshore between capes in Fujian. J. Oceanogr. Taiwan Strait 2008, 27, 87–91. [Google Scholar]
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vázquez, J.; Rodrigo-Alemany, R. Evaluation of storm impact on sandy beaches of the Gulf of Valencia using Landsat imagery series. Geomorphology 2014, 214, 388–401. [Google Scholar] [CrossRef]
- Anthony, E.J. Storms, shoreface morphodynamics, sand supply, and the accretion and erosion of coastal dune barriers in the southern North Sea. Geomorphology 2013, 199, 8–21. [Google Scholar] [CrossRef]
- Guo, J.L. Research of Embayed Beach Morphodynamics under the Impacts of Storm Events with Different Intensity Scales. Ph.D. Thesis, East China Normal University, Shanghai, China, 2022. [Google Scholar]
- Cai, F.; Su, X.Z.; Xia, D.X. Study on the Difference Between Storm Effects of Beaches on Two Sides of the Tropical Cyclone Track—Taking the Responses of Beaches to No.0307 Typhoon Imbudo as an Example. Adv. Mar. Sci. 2004, 22, 436–445. [Google Scholar]
- Komar, P.D. Beach Processes and Sedimentation, 2nd ed.; Prentice Hall, Inc: Englewood Cliffs, NJ, USA, 1998; pp. 1–544. [Google Scholar]
- Morton, R.; Paine, J.G.; Gibeaut, J. Stages and durations of post-storm beach recovery, southeastern Texas Coast, USA. J. Coast. Res. 1994, 10, 884–908. [Google Scholar]
- Cheng, L.; Shi, L.Q.; Xia, X.M.; Tong, X.L. Sedimentation and Recent Morphological Changes at Dongsha Beach, Zhujiajian Island, Zhejiang Province. Mar. Geol. Quat. Geol. 2014, 34, 37–44. [Google Scholar]
Typhoon | Affecting Time | Affecting Duration (h) | Classification |
---|---|---|---|
Aere | 3 July 2022 17:00–4 July 2022 02:00 | 9 | Tropical Storm |
Songda | 29 July 2022 23:00–31 July 2022 03:00 | 4 | Tropical Storm |
Trases | 31 July 2022 19:00–1 August 2022 11:00 | 9 | Tropical Storm |
Hinnamnor | 4 September 2022 23:00–5 September 2022 17:00 | 18 | Super Typhoon |
Muifa | 14 September 2022 10:00–15 September 2022 03:00 | 17 | Severe Typhoon |
Department | Item | Parameter |
---|---|---|
LiDAR Scanning Department | LiDAR Wavelength | 905 nm |
LiDAR Shooting Degree | 0.03° (Horizontal) 0.28° (Vertical) | |
Return Wave Count Maximum | 3 | |
Surveying and Mapping Camera | Sensor Size | 1 inch |
Effective Pixels | 20,000,000 | |
Photo Size | 5472 × 3648 | |
Focal Length | 8.8 mm/24 mm | |
Aperture | f/2.8–f/11 | |
Photo Format | JPEG | |
Assistant Position Camera | Resolution | 1280 × 960 |
FOV | 95° |
Measure Date | Points on the Seawall | Points on the Beach |
---|---|---|
14 July 2022 | 131 | 95 (four profiles) |
27 September 2022 | 131 | 199 (four profiles) |
23 February 2023 | 131 | 63 (five profiles) |
3 July 2023 | 131 | 128 (four profiles) |
Profile Number | Min Error (m) | Max Error (m) | Mean Error (m) | RMSE (m) |
---|---|---|---|---|
L1 1 | −0.09 | 0.07 | −0.004 | 0.03 |
L2 2 | −0.09 | 0.07 | 0.008 | 0.04 |
Average | −0.09 | 0.07 | 0.002 | 0.035 |
Elevation (m) | Area (×103 m2) | |||
---|---|---|---|---|
14 July 2022 | 27 September 2022 | 23 February 2023 | 3 July 2023 | |
4.0 ~ 4.5 | 4.32 | 4.36 | 5.10 | 4.99 |
3.5 ~ 4.0 | 4.01 | 3.70 | 4.18 | 3.89 |
3.0 ~ 3.5 | 6.25 | 7.49 | 9.04 | 7.44 |
2.5 ~ 3.0 | 17.84 | 13.43 | 16.32 | 23.26 |
2.0 ~ 2.5 | 22.05 | 15.74 | 19.89 | 19.51 |
1.5 ~2.0 | 26.54 | 21.90 | 26.37 | 21.08 |
1.0 ~ 1.5 | 31.55 | 28.10 | 31.60 | 27.93 |
0.5 ~ 1.0 | 33.11 | 38.49 | 31.19 | 30.88 |
0 ~ 0.5 | 26.90 | 41.85 | 29.78 | 28.84 |
−0.5 ~ 0 | 24.34 | 39.99 | 28.72 | 27.60 |
−1.0 ~ −0.5 | 29.63 | 31.65 | 28.23 | 34.22 |
−1.5 ~ −1.0 | 28.02 | 23.43 | 28.87 | 25.90 |
−2.0~ −1.5 | 29.74 | 4.90 | 8.93 | 25.79 |
−2.5 ~ −2.0 | 12.08 | 3.99 | ||
Total | 296.37 | 275.02 | 268.22 | 285.32 |
Erosion and Siltation Range (m) | Area (×103 m2) | |||
---|---|---|---|---|
14 July 2022 to 27 September 2022 | 27 September 2022 to 23 February 2023 | 23 February 2023 to 3 July 2023 | 14 July 2022 to 3 July 2023 | |
more than 1.0 | 0.02 | 0.10 | 0.13 | 0.15 |
0.8 ~ 1.0 | 0.02 | 0.14 | 0.10 | 0.09 |
0.6 ~ 0.8 | 1.57 | 0.87 | 0.31 | 0.15 |
0.4 ~ 0.6 | 21.33 | 10.58 | 2.47 | 0.48 |
0.2 ~ 0.4 | 50.65 | 75.41 | 12.69 | 27.29 |
0 ~ 0.2 | 53.84 | 95.93 | 89.56 | 125.70 |
−0.2 ~ 0 | 63.93 | 35.32 | 123.06 | 87.81 |
−0.4 ~ −0.2 | 69.53 | 27.43 | 36.70 | 36.84 |
−0.6 ~ −0.4 | 9.20 | 11.26 | 2.97 | 5.90 |
−0.8 ~ −0.6 | 3.87 | 9.24 | 0.10 | 0.25 |
−1.0 ~ −0.8 | 0.51 | 0.26 | 0.04 | 0.06 |
less than −1.0 | 0.08 | 0.06 | 0.04 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Q.; Wang, X.; Liu, Y.; Guo, J.; Cai, T.; Xia, X. Monitoring Change and Recovery of an Embayed Beach in Response to Typhoon Storms Using UAV LiDAR. Drones 2024, 8, 172. https://doi.org/10.3390/drones8050172
Lei Q, Wang X, Liu Y, Guo J, Cai T, Xia X. Monitoring Change and Recovery of an Embayed Beach in Response to Typhoon Storms Using UAV LiDAR. Drones. 2024; 8(5):172. https://doi.org/10.3390/drones8050172
Chicago/Turabian StyleLei, Qiujia, Xinkai Wang, Yifei Liu, Junli Guo, Tinglu Cai, and Xiaoming Xia. 2024. "Monitoring Change and Recovery of an Embayed Beach in Response to Typhoon Storms Using UAV LiDAR" Drones 8, no. 5: 172. https://doi.org/10.3390/drones8050172
APA StyleLei, Q., Wang, X., Liu, Y., Guo, J., Cai, T., & Xia, X. (2024). Monitoring Change and Recovery of an Embayed Beach in Response to Typhoon Storms Using UAV LiDAR. Drones, 8(5), 172. https://doi.org/10.3390/drones8050172