Emerging Research Topics in Drone Healthcare Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Text Mining
2.3. Topic Modelling
2.4. Topic Similarity
2.5. Research Gap Analysis
2.6. Pressing Issues
3. Results and Discussion
3.1. Drones in the Delivery of Time-Critical Medical Items
3.2. Drone Delivery of Non-Time Critical Medical Items
3.3. Empirical Research
3.4. Research Field Alignment
3.5. Study Limitations
3.6. Recommendations
- The development of more unified terminology to facilitate the identification and research alignment between studies upon the delivery of critical and non-critical medical items;
- The examination of the economic sustainability of drones for delivering health services through standard efficiency theory and a value-based economic assessment to weigh the benefits against the costs, considering that different solutions may compete for the limited financial resources available;
- The improvement of the private sector to better collect and share operational data, especially in time-critical medical item deliveries, where data collection opportunities are infrequent and the field lacks real-world user cases;
- Improved transparency and reporting of the technological and regulatory hurdles and compliance that drone operations had to overcome to be successful. Often, only the successes are reported;
- Research into the legal and regulatory barriers to the effective deployment of drones for delivering health services to determine a practical framework that facilitates drone use while minimising time and cost.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs. The Sustainable Development Goals Report 2023: Special Edition; United Nations: New York, NY, USA, 2023; ISBN 978-92-1-002491-4.
- Acharya, S.; Lin, V.; Dhingra, N. The Role of Health in Achieving the Sustainable Development Goals. Bull. World Health Organ. 2018, 96, 591–591A. [Google Scholar] [CrossRef] [PubMed]
- Jordan, H.; Roderick, P.; Martin, D.; Barnett, S. Distance, Rurality and the Need for Care: Access to Health Services in South West England. Int. J. Health Geogr. 2004, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Raykar, N.P.; Raguveer, V.; Abdella, Y.E.; Ali-Awadh, A.; Arora, H.; Asamoah-Akuoko, L.; Barnes, L.S.; Cap, A.P.; Chowdhury, A.; Cooper, Z.; et al. Innovative Blood Transfusion Strategies to Address Global Blood Deserts: A Consensus Statement from the Blood Delivery via Emerging Strategies for Emergency Remote Transfusion (Blood DESERT) Coalition. Lancet Glob. Health 2024, 12, e522–e529. [Google Scholar] [CrossRef] [PubMed]
- Bine, L.M.S.; Boukerche, A.; Ruiz, L.B.; Loureiro, A.A.F. Drone Delivery: Why, Where, and When. In Proceedings of the Int’l ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, Montreal, QC, Canada, 30 October–3 November 2023; ACM: Montreal, QC, Canada, 2023; pp. 35–43. [Google Scholar]
- Eskandaripour, H.; Boldsaikhan, E. Last-Mile Drone Delivery: Past, Present, and Future. Drones 2023, 7, 77. [Google Scholar] [CrossRef]
- Triche, R.M.; Greve, A.E.; Dubin, S.J. UAVs and Their Role in the Health Supply Chain: A Case Study from Malawi. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020; IEEE: Athens, Greece, 2020; pp. 1241–1248. [Google Scholar]
- Greve, A.; Dubin, S.; Triche, R. Assessing Feasibility and Readiness for Cargo Drones in Health Supply Chains. A Guide to Conducting Scoping Trips in Low- and Middle-Income Countries. USAID. Available online: https://www.usaid.gov/global-health/health-areas/hiv-and-aids/resources/assessing-feasibility-drones-supply-chains (accessed on 11 November 2022).
- Westgate, M.J.; Barton, P.S.; Pierson, J.C.; Lindenmayer, D.B. Text analysis tools for identification of emerging topics and research gaps in conservation science. Conserv. Biol. 2015, 29, 1606–1614. [Google Scholar] [CrossRef] [PubMed]
- Zander, K.K.; Garnett, S.T.; Sterly, H.; Ayeb-Karlsson, S.; Šedová, B.; Lotze-Campen, H.; Richerzhagen, C.; Baggen, H.S. Topic Modelling Exposes Disciplinary Divergence in Research on the Nexus between Human Mobility and the Environment. Humanit. Soc. Sci. Commun. 2022, 9, 34. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Benney, R.; Henry, M.; Lafond, K.; Meloni, A.; Ormonde, C.; Noetscher, G.; Patel, S.; Shurtliff, M.; Tavan, S.; Goldenstein, A.; et al. Joint Medical Distance Support and Evacuation Joint Capability Technology Demonstration. In Proceedings of the 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Dublin, Ireland, 23–26 May 2011; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2011. [Google Scholar]
- Baumgarten, M.C.; Röper, J.; Hahnenkamp, K.; Thies, K.-C. Drones Delivering Automated External Defibrillators—Integrating Unmanned Aerial Systems into the Chain of Survival: A Simulation Study in Rural Germany. Resuscitation 2022, 172, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Melhim, L.K.B. Intelligent Surveillance Drone System for Health Care Enhancement in a Smart City. Commun. Math. Appl. 2023, 14, 551–559. [Google Scholar] [CrossRef]
- Burchardt, M.; Umlauf, R. Where Is the Bottleneck? Drones and the Paradoxes of Digitising Medical Supplies in Ghana’s Landscapes of Care. Glob. Public Health 2023, 18, 2274434. [Google Scholar] [CrossRef]
- Kremer, P.; Haruna, F.; Tuffour Sarpong, R.; Agamah, D.; Billy, J.; Osei-Kwakye, K.; Aidoo, P.; Dodoo, D.; Okoh-Owusu, M. An Impact Assessment of the Use of Aerial Logistics to Improve Access to Vaccines in the Western-North Region of Ghana. Vaccine 2023, 41, 5245–5252. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Li, R. The Location Problem of Medical Drone Vertiports for Emergency Cardiac Arrest Needs. Sustainability 2023, 16, 44. [Google Scholar] [CrossRef]
- Schierbeck, S.; Nord, A.; Svensson, L.; Rawshani, A.; Hollenberg, J.; Ringh, M.; Forsberg, S.; Nordberg, P.; Hilding, F.; Claesson, A. National Coverage of Out-of-Hospital Cardiac Arrests Using Automated External Defibrillator-Equipped Drones—A Geographical Information System Analysis. Resuscitation 2021, 163, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Braßel, H.; Zeh, T.; Fricke, H.; Eltner, A. Optimal UAV Hangar Locations for Emergency Services Considering Restricted Areas. Drones 2023, 7, 203. [Google Scholar] [CrossRef]
- Wankmüller, C.; Truden, C.; Korzen, C.; Hungerländer, P.; Kolesnik, E.; Reiner, G. Optimal Allocation of Defibrillator Drones in Mountainous Regions. OR Spectr. 2020, 42, 785–814. [Google Scholar] [CrossRef]
- Bauer, J.; Moormann, D.; Strametz, R.; Groneberg, D.A. Development of Unmanned Aerial Vehicle (UAV) Networks Delivering Early Defibrillation for out-of-Hospital Cardiac Arrests (OHCA) in Areas Lacking Timely Access to Emergency Medical Services (EMS) in Germany: A Comparative Economic Study. BMJ Open 2021, 11, e043791. [Google Scholar] [CrossRef] [PubMed]
- Rees, N.; Howitt, J.; Breyley, N.; Geoghegan, P.; Powel, C. A Simulation Study of Drone Delivery of Automated External Defibrillator (AED) in Out of Hospital Cardiac Arrest (OHCA) in the UK. PLoS ONE 2021, 16, e0259555. [Google Scholar] [CrossRef] [PubMed]
- Scholz, S.S.; Wähnert, D.; Jansen, G.; Sauzet, O.; Latka, E.; Rehberg, S.; Thies, K.-C. AED Delivery at Night—Can Drones Do the Job? A Feasibility Study of Unmanned Aerial Systems to Transport Automated External Defibrillators during Night-Time. Resuscitation 2023, 185, 109734. [Google Scholar] [CrossRef] [PubMed]
- Levitt, C.V.; Boone, K.; Tran, Q.K.; Pourmand, A. Application of Technology in Cardiopulmonary Resuscitation, a Narrative Review. J. Clin. Med. 2023, 12, 7383. [Google Scholar] [CrossRef]
- Fischer, P.; Rohrer, U.; Nürnberger, P.; Manninger, M.; Scherr, D.; Von Lewinski, D.; Zirlik, A.; Wankmüller, C.; Kolesnik, E. Automated External Defibrillator Delivery by Drone in Mountainous Regions to Support Basic Life Support—A Simulation Study. Resusc. Plus 2023, 14, 100384. [Google Scholar] [CrossRef]
- Derkenne, C.; Jost, D.; Miron De L’Espinay, A.; Corpet, P.; Frattini, B.; Hong, V.; Lemoine, F.; Jouffroy, R.; Roquet, F.; Marijon, E.; et al. Automatic External Defibrillator Provided by Unmanned Aerial Vehicle (Drone) in Greater Paris: A Real World-Based Simulation. Resuscitation 2021, 162, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Glick, T.B.; Figliozzi, M.A.; Unnikrishnan, A. Case Study of Drone Delivery Reliability for Time-Sensitive Medical Supplies with Stochastic Demand and Meteorological Conditions. Transp. Res. Rec. J. Transp. Res. Board 2022, 2676, 242–255. [Google Scholar] [CrossRef]
- Cheskes, S.; McLeod, S.L.; Nolan, M.; Snobelen, P.; Vaillancourt, C.; Brooks, S.C.; Dainty, K.N.; Chan, T.C.Y.; Drennan, I.R. Improving Access to Automated External Defibrillators in Rural and Remote Settings: A Drone Delivery Feasibility Study. J. Am. Heart Assoc. 2020, 9, e016687. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.C.L.; Loh, N.; Lam, H.H.; Lee, J.W.; Liu, N.; Yeo, J.W.; Ho, A.F.W. The Role of Drones in Out-of-Hospital Cardiac Arrest: A Scoping Review. J. Clin. Med. 2022, 11, 5744. [Google Scholar] [CrossRef] [PubMed]
- Anggraeni, S.; Maulidina, A.; Dewi, M.W.; Rahmadianti, S.; Rizky, Y.P.C.; Arinalhaq, Z.F.; Usdiyana, D.; Nandiyanto, A.B.D.; Al-Obaidi, A.S.M. The Deployment of Drones in Sending Drugs and Patient Blood Samples COVID-19. Indones. J. Sci. Technol. 2020, 5, 193–200. [Google Scholar] [CrossRef]
- Ayyappaa, N.; Raj, A.Y.; Adithya, A.; Murali, R.; Vinodh, A. Autonomous Drone for Efficacious Blood Conveyance. In Proceedings of the 2019 4th International Conference on Robotics and Automation Engineering (ICRAE), Singapore, 22–24 November 2019; IEEE: Singapore, 2019; pp. 99–103. [Google Scholar]
- Scalea, J.R.; Restaino, S.; Scassero, M.; Blankenship, G.; Bartlett, S.T.; Wereley, N. An Initial Investigation of Unmanned Aircraft Systems (UAS) and Real-time Organ Status Measurement for Transporting Human Organs. IEEE J. Transl. Eng. Health Med. 2018, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Oakey, A.; Waters, T.; Zhu, W.; Royall, P.; Cherrett, T.; Courtney, P.; Majoe, D.; Jelev, N. Quantifying the Effects of Vibration on Medicines in Transit Caused by Fixed-Wing and Multi-Copter Drones. Drones 2021, 5, 22. [Google Scholar] [CrossRef]
- Ling, G.; Draghic, N. Aerial Drones for Blood Delivery. Transfusion 2019, 59, 1608–1611. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Li, Q.; Tian, Y.; Zhao, Y.; Shen, Z.; Zhou, T.; Li, J. An Unmanned Emergency Blood Dispatch System Based on an Early Prediction and Fast Delivery Strategy: Design and Development Study. Comput. Methods Programs Biomed. 2023, 235, 107512. [Google Scholar] [CrossRef]
- Lammers, D.T.; Williams, J.M.; Conner, J.R.; Baird, E.; Rokayak, O.; McClellan, J.M.; Bingham, J.R.; Betzold, R.; Eckert, M.J. Airborne! UAV Delivery of Blood Products and Medical Logistics for Combat Zones. Transfusion 2023, 63, S96–S104. [Google Scholar] [CrossRef]
- Formica, N.; Mostarda, L.; Navarra, A. UAVs Route Planning in Sea Emergencies. In Advanced Information Networking and Applications; Barolli, L., Woungang, I., Enokido, T., Eds.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2021; Volume 225, pp. 588–599. ISBN 978-3-030-75099-2. [Google Scholar]
- Buckland, D.M.; Cummings, M.M.; Mark, D.B.; Banerjee, A.G.; Snyder, K.; Starks, M.A. Design Considerations for UAV-Delivered Opioid Overdose Interventions. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–7. [Google Scholar]
- van Veelen, M.J.; Roveri, G.; Voegele, A.; Cappello, T.D.; Masè, M.; Falla, M.; Regli, I.B.; Mejia-Aguilar, A.; Mayrgündter, S.; Strapazzon, G. Drones Reduce the Treatment-Free Interval in Search and Rescue Operations with Telemedical Support—A Randomized Controlled Trial. Am. J. Emerg. Med. 2023, 66, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kumar, P.; Pachauri, K.; Singh, K. Drone Ambulance. In Proceedings of the 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida, India, 18–19 December 2020; IEEE: Greater Noida, India, 2020; pp. 705–708. [Google Scholar]
- Bayanbay, N.A.; Ozhikenov, K.A.; Tuleshov, Y.A.; Bezborodova, O.E.; Bodin, O.N.; Spirkin, A.N. Peculiarities of Equipping an Unmanned Medical Aerial Vehicles During Search and Rescue Operations. In Proceedings of the 2020 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Chemal, Russia, 29 June–3 July 2020; IEEE: Chemal, Russia, 2020; pp. 464–469. [Google Scholar]
- Sanz-Martos, S.; López-Franco, M.D.; Álvarez-García, C.; Granero-Moya, N.; López-Hens, J.M.; Cámara-Anguita, S.; Pancorbo-Hidalgo, P.L.; Comino-Sanz, I.M. Drone Applications for Emergency and Urgent Care: A Systematic Review. Prehospital Disaster Med. 2022, 37, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, X.; Chen, L.; Sun, X.; Li, R.; Zhong, W.; Fu, Y.; Yang, L.; Liu, W.; Han, W. Unmanned Aerial Vehicle Based Intelligent Triage System in Mass-Casualty Incidents Using 5G and Artificial Intelligence. World J. Emerg. Med. 2023, 14, 273. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qiu, X.; Li, S.; Wang, J.; Chen, W.; Hung, P.C.K.; Zheng, Z. Energy-Efficient Data Routing in Cooperative UAV Swarms for Medical Assistance after a Disaster. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 063106. [Google Scholar] [CrossRef] [PubMed]
- Rabta, B.; Wankmüller, C.; Reiner, G. A Drone Fleet Model for Last-Mile Distribution in Disaster Relief Operations. Int. J. Disaster Risk Reduct. 2018, 28, 107–112. [Google Scholar] [CrossRef]
- Yao, Q.; Yu, X. Send in the Drones Developing an Aerial Disaster Relief Response System. Soc. Sci. 2019, 2, 8–13. [Google Scholar] [CrossRef]
- Liu, L.; You, Z. Drone Transports Medical Supplies to Puerto Rico Based on Shortest Path. IOP Conf. Ser. Earth Environ. Sci. 2020, 512, 012140. [Google Scholar] [CrossRef]
- Law, C.T.; Moenig, C.; Jeilani, H.; Jeilani, M.; Young, T. Transforming Healthcare Logistics and Evaluating Current Use Cases of UAVs (Drones) as a Method of Transportation in Healthcare to Generate Recommendations for the NHS to Use Drone Technology at Scale: A Narrative Review. BMJ Innov. 2023, 9, 150–164. [Google Scholar] [CrossRef]
- Koshta, N.; Devi, Y.; Chauhan, C. Evaluating Barriers to the Adoption of Delivery Drones in Rural Healthcare Supply Chains: Preparing the Healthcare System for the Future. IEEE Trans. Eng. Manag. 2024, 1–13. [Google Scholar] [CrossRef]
- Grote, M.; Cherrett, T.; Oakey, A.; Royall, P.; Whalley, S.; Dickinson, J. How Do Dangerous Goods Regulations Apply to Uncrewed Aerial Vehicles Transporting Medical Cargos? Drones 2021, 5, 38. [Google Scholar] [CrossRef]
- De Silvestri, S.; Pagliarani, M.; Tomasello, F.; Trojaniello, D.; Sanna, A. Design of a Service for Hospital Internal Transport of Urgent Pharmaceuticals via Drones. Drones 2022, 6, 70. [Google Scholar] [CrossRef]
- Otero Arenzana, A.; Escribano Macias, J.J.; Angeloudis, P. Design of Hospital Delivery Networks Using Unmanned Aerial Vehicles. Transp. Res. Rec. 2020, 2674, 405–418. [Google Scholar] [CrossRef]
- Filippi, G.; Basu, T.; Patelli, E.; Vasile, M.; Fossati, M. A Digital Twin Model for Drone Based Distributed Healthcare Network. In Proceedings of the 33rd European Safety and Reliability Conference, Southampton, UK, 3–7 September 2023; Research Publishing Services: Chennai, India, 2023; pp. 2480–2481. [Google Scholar]
- Filippi, G.; Vasile, M.; Patelli, E.; Fossati, M. Generative Optimisation of Resilient Drone Logistic Networks. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23 July 2022; IEEE: Padua, Italy, 2022; pp. 1–8. [Google Scholar]
- Bahrainwala, L.; Knoblauch, A.M.; Andriamiadanarivo, A.; Diab, M.M.; McKinney, J.; Small, P.M.; Kahn, J.G.; Fair, E.; Rakotosamimanana, N.; Grandjean Lapierre, S. Drones and Digital Adherence Monitoring for Community-Based Tuberculosis Control in Remote Madagascar: A Cost-Effectiveness Analysis. PLoS ONE 2020, 15, e0235572. [Google Scholar] [CrossRef] [PubMed]
- Min, H. Leveraging Drone Technology for Last-Mile Deliveries in the e-Tailing Ecosystem. Sustainability 2023, 15, 11588. [Google Scholar] [CrossRef]
- Hou, W.; Fang, T.; Pei, Z.; He, Q.-C. Integrated Design of Unmanned Aerial Mobility Network: A Data-Driven Risk-Averse Approach. Int. J. Prod. Econ. 2021, 236, 108131. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Khan, I.H.; Singh, R.P.; Suman, R.; Mohan, S. Significant Features and Applications of Drones for Healthcare: An Overview. J. Ind. Integr. Manag. 2022, 2250024. [Google Scholar] [CrossRef]
- Eksioglu, S.D.; Proano, R.A.; Kolter, M.; Nurre Pinkley, S. Designing Drone Delivery Networks for Vaccine Supply Chain: A Case Study of Niger. IISE Trans. Healthc. Syst. Eng. 2023, 1–21. [Google Scholar] [CrossRef]
- Ochieng, W.O.; Ye, T.; Scheel, C.; Lor, A.; Saindon, J.; Yee, S.L.; Meltzer, M.I.; Kapil, V.; Karem, K. Uncrewed Aircraft Systems versus Motorcycles to Deliver Laboratory Samples in West Africa: A Comparative Economic Study. Lancet Glob. Health 2020, 8, e143–e151. [Google Scholar] [CrossRef]
- Olatunji, G.; Isarinade, T.D.; Emmanuel, K.; Olatunji, D.; Aderinto, N. Exploring the Transformative Role of Drone Technology in Advancing Healthcare Delivery in Africa; a Perspective. Ann. Med. Surg. 2023, 85, 5279–5284. [Google Scholar] [CrossRef] [PubMed]
- Adu-Gyamfi, S.; Gyasi, R.M.; Darkwa, B.D. Historicizing Medical Drones in Africa: A Focus on Ghana. Hist. Sci. Technol. 2021, 11, 103–125. [Google Scholar] [CrossRef]
- Lockhart, A.; While, A.; Marvin, S.; Kovacic, M.; Odendaal, N.; Alexander, C. Making Space for Drones: The Contested Reregulation of Airspace in Tanzania and Rwanda. Trans. Inst. Br. Geogr. 2021, 46, 850–865. [Google Scholar] [CrossRef]
- Quintanilla García, I.; Vera Vélez, N.; Alcaraz Martínez, P.; Vidal Ull, J.; Fernández Gallo, B. A Quickly Deployed and UAS-Based Logistics Network for Delivery of Critical Medical Goods during Healthcare System Stress Periods: A Real Use Case in Valencia (Spain). Drones 2021, 5, 13. [Google Scholar] [CrossRef]
- Inghels, M.; Mee, P.; Diallo, O.H.; Cissé, M.; Nelson, D.; Tanser, F.; Asghar, Z.; Koita, Y.; Laborde-Balen, G.; Breton, G. Improving Early Infant Diagnosis for HIV-Exposed Infants Using Unmanned Aerial Vehicles for Blood Sample Transportation in Conakry, Guinea: A Comparative Cost-Effectiveness Analysis. BMJ Glob. Health 2023, 8, e012522. [Google Scholar] [CrossRef]
- Ganesan, G.S.; Mokayef, M. Multi-Purpose Medical Drone for the Use in Pandemic Situation. In Proceedings of the 2021 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW), Riga, Latvia, 7–8 October 2021; IEEE: Riga, Latvia, 2021; pp. 188–192. [Google Scholar]
- Sylverken, A.A.; Owusu, M.; Agbavor, B.; Kwarteng, A.; Ayisi-Boateng, N.K.; Ofori, P.; El-Duah, P.; Yeboah, R.; Aryeetey, S.; Addo Asamoah, J.; et al. Using Drones to Transport Suspected COVID-19 Samples; Experiences from the Second Largest Testing Centre in Ghana, West Africa. PLoS ONE 2022, 17, e0277057. [Google Scholar] [CrossRef] [PubMed]
- Rangel, R.K. Development of Low Cost Medical Drone, Using COTS Equipment. In Proceedings of the 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA, 6–13 March 2021; pp. 1–12. [Google Scholar]
- Sham, R.; Siau, C.S.; Tan, S.; Kiu, D.C.; Sabhi, H.; Thew, H.Z.; Selvachandran, G.; Quek, S.G.; Ahmad, N.; Ramli, M.H.M. Drone Usage for Medicine and Vaccine Delivery during the COVID-19 Pandemic: Attitude of Health Care Workers in Rural Medical Centres. Drones 2022, 6, 109. [Google Scholar] [CrossRef]
- Anand, R.; Muneshwara, M.S.; Shivakumara, T.; Swetha, M.S.; Anil, G.N. Emergency Medical Services Using Drone Operations in Natural Disaster and Pandemics. In Inventive Communication and Computational Technologies; Ranganathan, G., Fernando, X., Shi, F., Eds.; Lecture Notes in Networks and Systems; Springer Nature Singapore: Singapore, 2022; Volume 311, pp. 227–239. ISBN 9789811655289. [Google Scholar]
- Restás, Á. Drone Applications Fighting COVID-19 Pandemic—Towards Good Practices. Drones 2022, 6, 15. [Google Scholar] [CrossRef]
- Kaushik, K.; Kumar, A. Demystifying Quantum Blockchain for Healthcare. Secur. Priv. 2023, 6, e284. [Google Scholar] [CrossRef]
- Safi’i, I.; Asyary, A.C.; Arifianto, O. Transition Flight Simulation of a Hybrid VTOL Fixed-Wing Drone. AIP Conf. Proc. 2021, 2366, 030013. [Google Scholar] [CrossRef]
- Raghunatha, A.; Lindkvist, E.; Thollander, P.; Hansson, E.; Jonsson, G. Critical Assessment of Emissions, Costs, and Time for Last-Mile Goods Delivery by Drones versus Trucks. Sci. Rep. 2023, 13, 11814. [Google Scholar] [CrossRef]
- Cawthorne, D.; Robbins-van Wynsberghe, A. An Ethical Framework for the Design, Development, Implementation, and Assessment of Drones Used in Public Healthcare. Sci. Eng. Ethics 2020, 26, 2867–2891. [Google Scholar] [CrossRef]
- Comtet, H.E.; Johannessen, K.-A. The Moderating Role of Pro-Innovative Leadership and Gender as an Enabler for Future Drone Transports in Healthcare Systems. Int. J. Environ. Res. Public Health 2021, 18, 2637. [Google Scholar] [CrossRef] [PubMed]
- Comtet, H.E.; Johannessen, K.-A. A Socio-Analytical Approach to the Integration of Drones into Health Care Systems. Information 2022, 13, 62. [Google Scholar] [CrossRef]
- Jeyabalan, V.; Donelle, L.; Meier, P.; Nouvet, E. To Obtain Informed Consent or Not to Obtain Informed Consent? Drones for Health Programs in the Grey Zone between Research and Public Health. Drones 2023, 7, 247. [Google Scholar] [CrossRef]
- Dhote, J.; Limbourg, S. Designing Unmanned Aerial Vehicle Networks for Biological Material Transportation—The Case of Brussels. Comput. Ind. Eng. 2020, 148, 106652. [Google Scholar] [CrossRef]
- Amirsahami, A.; Barzinpour, F.; Pishvaee, M.S. A Hierarchical Model for Strategic and Operational Planning in Blood Transportation with Drones. PLoS ONE 2023, 18, e0291352. [Google Scholar] [CrossRef] [PubMed]
- Vanderhorst, H.R.; Suresh, S.; Renukappa, S.; Heesom, D. Strategic Framework of Unmanned Aerial Systems Integration in the Disaster Management Public Organisations of the Dominican Republic. Int. J. Disaster Risk Reduct. 2021, 56, 102088. [Google Scholar] [CrossRef]
- Dhakal, S.; Karunakaran, K. Design and Implementation of Drone Technology for Medical Supplement Delivery Services in Rural Regions. Int. Res. J. Eng. Technol. 2023, 10, 545–550. [Google Scholar] [CrossRef]
- Aggarwal, S.; Gupta, P.; Mahajan, N.; Balaji, S.; Singh, K.J.; Bhargava, B.; Panda, S. Implementation of Drone Based Delivery of Medical Supplies in North-East India: Experiences, Challenges and Adopted Strategies. Front. Public Health 2023, 11, 1128886. [Google Scholar] [CrossRef]
- Johnson, A.P.; Sikich, N.J.; Evans, G.; Evans, W.; Giacomini, M.; Glendining, M.; Krahn, M.; Levin, L.; Oh, P.; Perera, C. Health Technology Assessment: A Comprehensive Framework for Evidence-Based Recommendations in Ontario. Int. J. Technol. Assess. Health Care 2009, 25, 141–150. [Google Scholar] [CrossRef]
- Banta, D. What Is Technology Assessment? Int. J. Technol. Assess. Health Care 2009, 25, 7–9. [Google Scholar] [CrossRef]
Topic # | Topic Name | Research Area | Top 20 Words |
---|---|---|---|
1 | Optimisation of Supply Chains | Healthcare supply chains | location, service, problem, propose, model, algorithm, optimisation, efficiency, provide, time, route, resource, solution, plan, path, facility, distribution, station, optimal, data |
2 | Pandemic Response | Healthcare supply chains | healthcare, technology, develop, COVID, application, pandemic, research, current, process, future, include, work, recent, learning, review, article, world, implement, blockchain |
3 | Search and Rescue | Disaster relief and search operations | system, patient, rescue, control, search, operation, environment, situation, use, present, autonomous, propose, GPS, device, monitor, technique, improve, smart, detection |
4 | Defibrillator Deployment | Delivery of time-critical medical items | defibrillator, hospital, ohca, cardiac arrest, external, automated, simulation, survival, study, improve, medical service, bystander, ems, time, region, feasibility, response time, access, experience, minute |
5 | Engineering and Design Considerations | Empirical research | design, flight, requirement, safety, scenario, urban, performance, aircraft, reliable, risk, fix, wing, type, fast, landing, configuration, project, failure, multirotor, power |
6 | Cost-effectiveness | Healthcare supply chains | cost, network, analysis, area, model, increase, effective, vaccine, comparison, improve, range, condition, life, year, coverage, existing, economic, number, communication |
7 | Blood and Organ Transport | Delivery of time-critical medical items | transport, blood, sample, product, test, study, organ, quality, effect, flight, laboratory, temperature, significant, vibration, degrees, ground, specimen, evaluation, impact, parameter, clinical, transfusion |
8 | Ethical and Social Considerations | Empirical research | care, human, acceptance, challenge, public, community, ethic, decision, sector, context, participant, user, interview, technology, value, impact, perception, adoption, sensitive, worker |
9 | Overcoming Remoteness | Healthcare supply chains | delivery, medicine, supply, rural, distance, country, road, drug, timely, solution, barrier, item, deploy, essential, mile, fleet, pharmacy, access, overcome, battery |
10 | Emergency Response | Delivery of time-critical medical items | emergency, time, response, vehicle, reduce, aid, significant, ambulance, fast, traffic, save, victim, real, travel, demonstrate, live, comparison, min, many, locate, data, accident, scene |
11 | Disaster Relief | Disaster relief and search operations | medical, disaster, area, remote, zone, relief, logistic, humanitarian, system, event, aerial, assistance, care, military, carry, goods, provision, infrastructure, challenge, life |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campbell, H.A.; Bosiocic, V.; Hvala, A.; Brady, M.; Campbell, M.A.; Skelton, K.; Luiz, O.J. Emerging Research Topics in Drone Healthcare Delivery. Drones 2024, 8, 258. https://doi.org/10.3390/drones8060258
Campbell HA, Bosiocic V, Hvala A, Brady M, Campbell MA, Skelton K, Luiz OJ. Emerging Research Topics in Drone Healthcare Delivery. Drones. 2024; 8(6):258. https://doi.org/10.3390/drones8060258
Chicago/Turabian StyleCampbell, Hamish A., Vanya Bosiocic, Aliesha Hvala, Mark Brady, Mariana A. Campbell, Kade Skelton, and Osmar J. Luiz. 2024. "Emerging Research Topics in Drone Healthcare Delivery" Drones 8, no. 6: 258. https://doi.org/10.3390/drones8060258
APA StyleCampbell, H. A., Bosiocic, V., Hvala, A., Brady, M., Campbell, M. A., Skelton, K., & Luiz, O. J. (2024). Emerging Research Topics in Drone Healthcare Delivery. Drones, 8(6), 258. https://doi.org/10.3390/drones8060258