Radio Frequency Signal-Based Drone Classification with Frequency Domain Gramian Angular Field and Convolutional Neural Network
Abstract
:1. Introduction
2. Related Works
3. System Model and Problem Statement
3.1. System Model
3.2. Problem Statement
4. Proposed Method
4.1. Frequency Spectrum Calculation
4.2. Frequency Domain-Modified Gramian Angular Field Transform
4.3. Multi-FDGAF Image Fusion
4.4. CNN Design
5. Experimental Results
5.1. Datasets
5.2. Visualization of Drone RF Signal
5.3. Results of Proposed FDGAF-CNN for Drone Classification
5.4. Classification Accuracy Comparison of Different Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, H.; Abeywickrama, S.; Zhang, L.; Yuen, C. Low-complexity portable passive drone surveillance via SDR-based signal processing. IEEE Commun. Mag. 2020, 56, 112–118. [Google Scholar] [CrossRef]
- Swinney, C.; Woods, J. A review of security incidents and defence techniques relating to the malicious use of small unmanned aerial systems. IEEE Aerosp. Electron. Syst. Mag. 2022, 37, 14–28. [Google Scholar] [CrossRef]
- Zhang, H.; Li, T.; Li, Y.; Li, J.; Dobre, O.; Wen, Z. RF-based drone classification under complex electromagnetic environments using deep learning. IEEE Sens. J. 2023, 23, 6099–6108. [Google Scholar] [CrossRef]
- Shi, X.; Yang, C.; Xie, W.; Liang, C.; Shi, Z.; Chen, J. Anti-drone system with multiple surveillance technologies: Architecture, implementation, and challenges. IEEE Commun. Mag. 2018, 56, 68–74. [Google Scholar] [CrossRef]
- Soltanieh, N.; Norouzi, Y.; Yang, Y.; Karmakar, N. A review of radio frequency fingerprinting techniques. IEEE J. Radio Freq. Identif. 2020, 4, 222–233. [Google Scholar] [CrossRef]
- Ezuma, M.; Erden, F.; Anjinappa, C.; Ozdemir, C.; Guvenc, I. Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and Bluetooth interference. IEEE Open J. Commun. Soc. 2020, 1, 60–76. [Google Scholar] [CrossRef]
- Zhang, H.; Li, T.; Su, N.; Wei, D.; Li, Y.; Wen, Z. Drone identification based on normalized cyclic prefix correlation spectrum. IEEE Trans. Cogn. Commun. Netw. 2024, 10, 1241–1252. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, C.; Xu, L.; Gulliver, T. A UAV detection algorithm based on an artificial neural network. IEEE Access 2018, 6, 24720–24728. [Google Scholar] [CrossRef]
- Bremnes, K.; Moen, R.; Yeduri, Y.; Yakkati, R.; Cenkeramaddi, L. Classification of UAVs utilizing fixed boundary empirical wavelet sub-bands of RF fingerprints and deep convolutional neural network. IEEE Sens. J. 2022, 22, 21248–21256. [Google Scholar] [CrossRef]
- Li, T.; Hong, Z.; Cai, Q.; Yu, L.; Wen, Z.; Yang, R. BisSiam: Bispectrum siamese network based contrastive learning for UAV anomaly detection. IEEE Trans. Knowl. Data Eng. 2023, 35, 12109–12124. [Google Scholar] [CrossRef]
- Xie, Y.; Jiang, P.; Gu, Y.; Xiao, X. Dual-source detection and identification system based on UAV radio frequency signal. IEEE Trans. Instrum. Meas. 2021, 70, 2006215. [Google Scholar] [CrossRef]
- Kunze, S.; Saha, B. Drone classification with a convolutional neural network applied to raw IQ data. In Proceedings of the 3rd URSI Atlantic Asia Pacific Radio Sci. Meeting (AT-AP-RASC), Gran Canaria, Spain, 30 May–4 June 2022; pp. 1–4. [Google Scholar]
- Soltani, N.; Reus-Muns, G.; Salehi, B.; Dy, J.; Ioannidis, S.; Chowdhury, K. RF fingerprinting unmanned aerial vehicles with non-standard transmitter waveforms. IEEE Trans. Veh. Technol. 2020, 69, 15518–15531. [Google Scholar] [CrossRef]
- Xue, C.; Li, T.; Li, Y.; Ruan, Y.; Zhang, R.; Dobre, O.A. Radio-frequency identification for drones with nonstandard waveforms using deep learning. IEEE Trans. Instrum. Meas. 2023, 72, 5503713. [Google Scholar] [CrossRef]
- Yang, J.; Gu, H.; Hu, H.; Zhang, X.; Gui, G.; Gacanin, H. Deep complex-valued convolutional neural network for drone recognition based on RF fingerprinting. Drones 2022, 6, 374. [Google Scholar] [CrossRef]
- Yang, C.; Jiang, W.; Guo, Z. Time series data classification based on dual path CNN-RNN cascade network. IEEE Access 2019, 7, 155304–155312. [Google Scholar] [CrossRef]
- Nie, W.; Han, C.; Zhou, M.; Xie, B.; Jiang, Q. UAV detection and identification based on WiFi signal and RF fingerprint. IEEE Sens. J. 2021, 21, 13540–13550. [Google Scholar] [CrossRef]
- Nguyen, P.; Truong, H.; Ravindranathan, M. Matthan: Drone presence detection by identifying physical signatures in the drone’s RF communication. In Proceedings of the 15th Annual International Conference ACM, Niagara Falls, NY, USA, 19–23 June 2017; pp. 211–224. [Google Scholar]
- Bisio, I.; Garibotto, C.; Lavagetto, F.; Sciarrone, A.; Zappatore, S. Blind detection: Advanced techniques for WiFi-based drone surveillance. IEEE Trans. Veh. Technol. 2019, 68, 938–946. [Google Scholar] [CrossRef]
- Alipour-Fanid, A.; Dabaghchian, M.; Wang, N.; Wang, P.; Zhao, L.; Zeng, K. Machine learning-based delay-aware UAV detection and operation mode identification over encrypted WiFi traffic. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2346–2360. [Google Scholar] [CrossRef]
- Reus-Muns, G.; Chowdhury, K. Classifying UAVs with proprietary waveforms via preamble feature extraction and federated learning. IEEE Trans. Veh. Technol. 2021, 70, 6279–6290. [Google Scholar] [CrossRef]
- Medaiyese, O.; Ezuma, M.; Lauf, A.; Guvenc, I. Wavelet transform analytics for RF-based UAV detection and identification system using machine learning. Pervasive Mob. Comput. 2022, 82, 101569. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, P.; Yan, X.; Wu, C.; He, L. Radio frequency-based UAV sensing using novel hybrid lightweight learning network. IEEE Sens. J. 2024, 24, 4841–4850. [Google Scholar] [CrossRef]
- Kumbasar, N.; Kilic, R.; Oral, E.; Ozbek, I. Comparison of spectrogram, persistence spectrum and percentile spectrum based image representation performances in drone detection and classification using novel HMFFNet: Hybrid Model with Feature Fusion Network. Expert Syst. Appl. 2022, 206, 117654. [Google Scholar] [CrossRef]
- Noh, D.; Jeong, S.; Hoang, H.; Pham, Q.; Huynh-The, T.; Hasegawa, M.; Sekiya, H.; Kwon, S.; Chung, S.; Hwang, W. Signal preprocessing technique with noise-tolerant for RF based UAV signal classification. IEEE Access 2022, 10, 134785–134798. [Google Scholar] [CrossRef]
- Huynh-The, T.; Pham, Q.; Nguyen, T.; Costa, D.; Kim, D. RF-UAVNet: High-performance convolutional network for RF-based drone surveillance systems. IEEE Access 2022, 10, 49696–49707. [Google Scholar] [CrossRef]
- Allahham, M.; Khattab, T.; Mohamed, A. Deep learning for RF based drone detection and identification: A multi-channel 1-D convolutional neural networks approach. In Proceedings of the IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; pp. 112–117. [Google Scholar]
- Sanjoy, B.; Sreeraj, R.; Sofie, P.; Bart, S. Combined RF-based drone detection and classification. IEEE Trans. Cognit. Commun. Netw. 2021, 8, 111–120. [Google Scholar]
- Swinney, J.; Woods, C. Unmanned aerial vehicle operating mode classification using deep residual learning feature extraction. Aerospace 2021, 8, 79. [Google Scholar] [CrossRef]
- Xiao, L.; Yan, Y. Radar emitter identification based on novel time-frequency spectrum and convolutional neural network. IEEE Commun. Lett. 2021, 25, 2634–2638. [Google Scholar] [CrossRef]
- Wang, G.; Oates, T. Imaging time-series to improve classification and imputation. In Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015; pp. 3939–3945. [Google Scholar]
- Shi, Y.; Xu, H.; Zhang, Y.; Qi, Z.; Wang, D. GAF-MAE: A self-supervised automatic modulation classification method based on Gramian Angular Field and masked autoencoder. IEEE Trans. Cogn. Commun. Netw. 2024, 10, 94–106. [Google Scholar] [CrossRef]
- Qi, Y.; Hu, Q. Toward novel time representations for RFF identification using imperfect data sets. IEEE Internet Things J. 2023, 10, 2743–2753. [Google Scholar] [CrossRef]
- Lee, H.; Han, S.; Byeon, J.; Han, S.; Myung, R.; Joung, J.; Choi, J. CNN-based UAV detection and classification using sensor fusion. IEEE Access 2023, 11, 68791–68808. [Google Scholar] [CrossRef]
- Lv, Q.; Quan, Y.; Feng, W.; Sha, M.; Dong, S.; Xing, M. Radar deception jamming recognition based on weighted ensemble CNN with transfer learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5107511. [Google Scholar] [CrossRef]
- Allahham, S.; Al-Sa’d, F.; Al-Ali, A.; Mohamed, A.; Khattab, T.; Erbad, A. DroneRF dataset: A dataset of drones for RF-based detection, classification and identification. Data Brief 2019, 26, 104313. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Mao, S.; Zhou, C.; Sun, G.; Shi, Z.; Chen, J. DroneRFa: A large-scale dataset of drone radio frequency signals for detecting low-altitude drones. J. Electron. Inf. Technol. 2024, 46, 1147–1156. [Google Scholar]
- Al-Sad, M.; Al-Ali, A.; Mohamed, A.; Khattab, T.; Erbad, A. RF based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database. Future Gener. Comput. Syst. 2019, 100, 86–97. [Google Scholar] [CrossRef]
- Al-Emadi, S.; Al-Senaid, F. Drone detection approach based on radio-frequency using convolutional neural network. In Proceedings of the IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; pp. 29–34. [Google Scholar]
- Kılıç, R.; Kumbasar, N.; Oral, M.; Ozbek, I. Drone classification using RF signal based spectral features. Eng. Sci. Technol. Int. J. 2022, 28, 101028. [Google Scholar] [CrossRef]
Dataset | Input Image | Accuracy (%) |
---|---|---|
DroneRF | FDGAFL | 97.67 |
FDGAFH | 94.85 | |
FDGAF | 98.72 | |
DroneRFa | FDGAFI | 97.94 |
FDGAFQ | 94.60 | |
FDGAF | 98.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; He, Z. Radio Frequency Signal-Based Drone Classification with Frequency Domain Gramian Angular Field and Convolutional Neural Network. Drones 2024, 8, 511. https://doi.org/10.3390/drones8090511
Fu Y, He Z. Radio Frequency Signal-Based Drone Classification with Frequency Domain Gramian Angular Field and Convolutional Neural Network. Drones. 2024; 8(9):511. https://doi.org/10.3390/drones8090511
Chicago/Turabian StyleFu, Yuanhua, and Zhiming He. 2024. "Radio Frequency Signal-Based Drone Classification with Frequency Domain Gramian Angular Field and Convolutional Neural Network" Drones 8, no. 9: 511. https://doi.org/10.3390/drones8090511
APA StyleFu, Y., & He, Z. (2024). Radio Frequency Signal-Based Drone Classification with Frequency Domain Gramian Angular Field and Convolutional Neural Network. Drones, 8(9), 511. https://doi.org/10.3390/drones8090511