Effect of Post Treatment on the Microstructure, Surface Roughness and Residual Stress Regarding the Fatigue Strength of Selectively Laser Melted AlSi10Mg Structures
Abstract
:1. Introduction
2. Materials and Methods
- Test series “AB”: As-built condition (no post treatment applied),
- Test series “HIP”: Hot isostatic pressing + age hardening,
- Test series “SA”: Solution annealing + age hardening.
2.1. SEM Investigation
2.2. High Cycle Fatigue Assessment
2.3. Residual Stress Measurement Methodology
2.4. Surface Roughness Evaluation
3. Results
3.1. Microstructural Analysis
3.2. Residual Stress Measurement
3.2.1. Surface Residual Stresses and Cyclic Stability
3.2.2. In-Depth Residual Stress Distribution
3.3. Surface Roughness Parameter Evaluation
3.4. High Cycle Fatigue Testing
3.5. Fracture Surface Analysis
3.5.1. Failure from Intrinsic Imperfections
3.5.2. Failure from Surface Features
3.6. Fatigue Assessment
3.6.1. Mean Stress Correction
3.6.2. Assessment of the Surface Roughness in Mean Stress Corrected State
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leary, M.; Mazur, M.; Elambasseril, J.; McMillan, M.; Chirent, T.; Sun, Y.; Qian, M.; Easton, M.; Brandt, M. Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater. Des. 2016, 98, 344–357. [Google Scholar] [CrossRef]
- Brandt, M.; Sun, S.J.; Leary, M.; Feih, S.; Elambasseril, J.; Liu, Q.C. High-Value SLM Aerospace Components: From Design to Manufacture. Adv. Mater. Res. 2013, 633, 135–147. [Google Scholar] [CrossRef]
- Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2016, 83, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Harun, W.; Kamariah, M.; Muhamad, N.; Ghani, S.; Ahmad, F.; Mohamed, Z. A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol. 2018, 327, 128–151. [Google Scholar] [CrossRef]
- Huynh, L.; Rotella, J.; Sangid, M.D. Fatigue behavior of IN718 microtrusses produced via additive manufacturing. Mater. Des. 2016, 105, 278–289. [Google Scholar] [CrossRef]
- Koutiri, I.; Pessard, E.; Peyre, P.; Amlou, O.; de Terris, T. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Technol. 2018, 255, 536–546. [Google Scholar] [CrossRef]
- Vayssette, B.; Saintier, N.; Brugger, C.; Elmay, M.; Pessard, E. Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: Effect on the High Cycle Fatigue life. Procedia Eng. 2018, 213, 89–97. [Google Scholar] [CrossRef]
- Campbell, G.; Lahey, R. A survey of serious aircraft accidents involving fatigue fracture. Int. J. Fatigue 1984, 6, 25–30. [Google Scholar] [CrossRef]
- Uzan, N.E.; Shneck, R.; Yeheskel, O.; Frage, N. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM). Mater. Sci. Eng. A 2017, 704, 229–237. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Maskery, I.; Tuck, C.; Ashcroft, I.; Everitt, N.M. Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality. Mater. Des. 2016, 104, 174–182. [Google Scholar] [CrossRef]
- Afkhami, S.; Dabiri, M.; Alavi, S.H.; Björk, T.; Salminen, A. Fatigue characteristics of steels manufactured by selective laser melting. Int. J. Fatigue 2019, 122, 72–83. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, S.J.; Wang, H.L.; Hou, W.T.; Hao, Y.L.; Yang, R.; Sercombe, T.B.; Zhang, L.C. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater. 2016, 113, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.; Gu, D. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres. Appl. Surf. Sci. 2015, 355, 310–319. [Google Scholar] [CrossRef]
- Gaytan, S.M.; Murr, L.E.; Medina, F.; Martinez, E.; Lopez, M.I.; Wicker, R.B. Advanced metal powder based manufacturing of complex components by electron beam melting. Mater. Technol. 2013, 24, 180–190. [Google Scholar] [CrossRef]
- Zhang, L.C.; Attar, H. Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review. Adv. Eng. Mater. 2016, 18, 463–475. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.J.; Wang, S.G.; Hou, W.T.; Li, Y.; Zhang, L.C.; Hao, Y.L.; Yang, R.; Misra, R.; Murr, L.E. Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting. Acta Mater. 2018, 150, 1–15. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wang, H.L.; Li, S.J.; Wang, S.G.; Wang, W.J.; Hou, W.T.; Hao, Y.L.; Yang, R.; Zhang, L.C. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater. 2017, 126, 58–66. [Google Scholar] [CrossRef]
- Ceschini, L.; Morri, A.; Sambogna, G. The effect of hot isostatic pressing on the fatigue behaviour of sand-cast A356-T6 and A204-T6 aluminum alloys. J. Mater. Process. Technol. 2008, 204, 231–238. [Google Scholar] [CrossRef]
- Domfang Ngnekou, J.N.; Nadot, Y.; Henaff, G.; Nicolai, J.; Ridosz, L. Influence of defect size on the fatigue resistance of AlSi10Mg alloy elaborated by selective laser melting (SLM). Procedia Struct. Integr. 2017, 7, 75–83. [Google Scholar] [CrossRef]
- Domfang Ngnekou, J.N.; Nadot, Y.; Henaff, G.; Nicolai, J.; Kan, W.H.; Cairney, J.M.; Ridosz, L. Fatigue properties of AlSi10Mg produced by Additive Layer Manufacturing. Int. J. Fatigue 2019, 119, 160–172. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, J.J.; Kim, K.H.; Kim, N.J.; Lee, S.; Lee, E.W. Effects of HIPping on high-cycle fatigue properties of investment cast A356 aluminum alloys. Mater. Sci. Eng. A 2003, 340, 123–129. [Google Scholar] [CrossRef]
- Wang, Q.; Apelian, D.; Lados, D. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects. J. Light Met. 2001, 1, 73–84. [Google Scholar] [CrossRef]
- Wang, Q.; Apelian, D.; Lados, D. Fatigue behavior of A356/357 aluminum cast alloys. Part II – Effect of microstructural constituents. J. Light Met. 2001, 1, 85–97. [Google Scholar] [CrossRef]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Beretta, S.; Romano, S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. Int. J. Fatigue 2017, 94, 178–191. [Google Scholar] [CrossRef]
- Buffiere, J.Y. Fatigue Crack Initiation In addition, Propagation From Defects In Metals: Is 3D Characterization Important? Procedia Struct. Integr. 2017, 7, 27–32. [Google Scholar] [CrossRef]
- Ngnekou, J.N.D.; Henaff, G.; Nadot, Y.; Nicolai, J.; Ridosz, L. Fatigue resistance of selectively laser melted aluminum alloy under T6 heat treatment. Procedia Eng. 2018, 213, 79–88. [Google Scholar] [CrossRef]
- Brandl, E.; Heckenberger, U.; Holzinger, V.; Buchbinder, D. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 2012, 34, 159–169. [Google Scholar] [CrossRef]
- Arola, D.; Williams, C. Estimating the fatigue stress concentration factor of machined surfaces. Int. J. Fatigue 2002, 24, 923–930. [Google Scholar] [CrossRef]
- Peterson, R.E.; Plunkett, R. Stress Concentration Factors. J. Appl. Mech. 1975, 42, 248. [Google Scholar] [CrossRef]
- Webster, G.A.; Ezeilo, A.N. Residual stress distributions and their influence on fatigue lifetimes. Int. J. Fatigue 2001, 23, 375–383. [Google Scholar] [CrossRef]
- Zhuang, W.Z.; Halford, G.R. Investigation of residual stress relaxation under cyclic load. Int. J. Fatigue 2001, 23, 31–37. [Google Scholar] [CrossRef]
- EOS GmbH—Electro Optical Systems. Data Sheet: EOS Aluminium AlSi10Mg; EOS GmbH—Electro Optical Systems: Krailling, Germany, 2014. [Google Scholar]
- European Comittee for Standardization (CEN). Aluminium and Aluminium Alloys—Castings—Chemical Composition and Mechanical Properties; European Comittee for Standardization: Brussels, Belgium, 2010. [Google Scholar]
- Schneller, W.; Leitner, M.; Springer, S.; Grün, F.; Taschauer, M. Effect of HIP Treatment on Microstructure and Fatigue Strength of Selectively Laser Melted AlSi10Mg. J. Manuf. Mater. Process. 2019, 3, 16. [Google Scholar] [CrossRef]
- ASTM. ASTM E1508-98 (2003), Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy; ASTM: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Takata, N.; Kodaira, H.; Sekizawa, K.; Suzuki, A.; Kobashi, M. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Mater. Sci. Eng. A 2017, 704, 218–228. [Google Scholar] [CrossRef]
- Li, W.; Li, S.; Liu, J.; Zhang, A.; Zhou, Y.; Wei, Q.; Yan, C.; Shi, Y. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater. Sci. Eng. A 2016, 663, 116–125. [Google Scholar] [CrossRef]
- Tensi, H.M.; Hogerl, J. Influence of Heat Treatment on the Microstructure and Mechanical Behavior of High Strength AlSi Cast Alloys. In Heat Treating, Proceedings of the 16th Conference; Dossett, J.L., Luetje, R.E., Eds.; ASM International: Materials Park, OH, USA, 2010; pp. 243–247. [Google Scholar]
- Cai, C.; Geng, H.; Wang, S.; Gong, B.; Zhang, Z. Microstructure Evolution of AlSi10Mg(Cu) Alloy Related to Isothermal Exposure. Materials 2018, 11, 809. [Google Scholar] [CrossRef]
- Nicholas, T. High Cycle Fatigue: A Mechanics of Materials Perspective, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Gänser, H.P.; Maierhofer, J.; Christiner, T. Statistical correction for reinserted runouts in fatigue testing. Int. J. Fatigue 2015, 80, 76–80. [Google Scholar] [CrossRef]
- Dengel, D. Die arc sin √P-Transformation—Ein einfaches Verfahren zur grafischen und rechnerischen Auswertung geplanter Wöhlerversuche. Mater. Werkst. 1975, 6, 253–261. [Google Scholar] [CrossRef]
- ASTM International. Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (e-N) Fatigue Data; ASTM: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Bader, Q. Kadum, A. Mean Stress Correction Effects On the Fatigue Life Behavior of Steel Alloys by Using Stress Life Approach Theories. Int. J. Eng. Technol. 2014, 10, 50–58. [Google Scholar]
- Dowling, N.E.; Calhoun, C.A.; Arcari, A. Mean stress effects in stress-life fatigue and the Walker equation. Fatigue Fract. Eng. Mater. Struct. 2009, 32, 163–179. [Google Scholar] [CrossRef]
- Pallarés-Santasmartas, L.; Albizuri, J.; Avilés, A.; Avilés, R. Mean Stress Effect on the Axial Fatigue Strength of DIN 34CrNiMo6 Quenched and Tempered Steel. Metals 2018, 8, 213. [Google Scholar] [CrossRef]
- Gerber, H. Bestimmung der zulässigen Spannungen in Eisenkonstruktionen. Z. Bayrischen Arch. Ing. Vereins 1874, 6, 101–110. [Google Scholar]
- Dietman, H. Festigkeitsberechnung bei Mehrachsiger Schwingbeanspruchung. Konstruktion 1973, 25, 181–189. [Google Scholar]
- Mercelis, P.; Kruth, J.P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006, 12, 254–265. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, X.; Zhu, Y.; Ding, Z.; Zhu, X.; Sun, J.; Yan, B. Investigation of Performance and Residual Stress Generation of AlSi10Mg Processed by Selective Laser Melting. Adv. Mater. Sci. Eng. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
- ASTM. ASTM, E915-96(2002), Standard Test Method for Verifying the Alignment of X-ray Diffraction Instrumentation for Residual Stress Measurement; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- ASTM. ASTM, E2860-12, Standard Test Method for Residual Stress Measurement by X-ray Diffraction for Bearing Steels; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- DIN. DIN EN ISO 4287: 2010-07, Geometrische Produktspezifikation (GPS)—Oberflächenbeschaffenheit: Tastschnittverfahren— Benennungen, Definitionen und Kenngrößen der Oberflächenbeschaffenheit; Beuth: Berlin, Germany, 2010. [Google Scholar] [CrossRef]
- Pomberger, S.; Stoschka, M.; Leitner, M. Cast surface texture characterisation via areal roughness. Precis. Eng. 2019, 60, 465–481. [Google Scholar] [CrossRef]
- Tang, M.; Pistorius, P.C.; Narra, S.; Beuth, J.L. Rapid Solidification: Selective Laser Melting of AlSi10Mg. JOM 2016, 68, 960–966. [Google Scholar] [CrossRef]
- Dai, D.; Gu, D.; Zhang, H.; Zhang, J.; Du, Y.; Zhao, T.; Hong, C.; Gasser, A.; Poprawe, R. Heat-induced molten pool boundary softening behavior and its effect on tensile properties of laser additive manufactured aluminum alloy. Vacuum 2018, 154, 341–350. [Google Scholar] [CrossRef]
- Islam, M.A.; Farhat, Z.N. The influence of porosity and hot isostatic pressing treatment on wear characteristics of cast and P/M aluminum alloys. Wear 2011, 271, 1594–1601. [Google Scholar] [CrossRef]
- Bösch, D.; Pogatscher, S.; Hummel, M.; Fragner, W.; Uggowitzer, P.J.; Göken, M.; Höppel, H.W. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility. Metall. Mater. Trans. A 2015, 46, 1035–1045. [Google Scholar] [CrossRef]
- Mulazimoglu, M.H.; Zaluska, A.; Gruzleski, J.E.; Paray, F. Electron microscope study of Al-Fe-Si intermetallics in 6201 aluminum alloy. Metall. Mater. Trans. A 1996, 27, 929–936. [Google Scholar] [CrossRef]
- Zhou, L.; Mehta, A.; Schulz, E.; McWilliams, B.; Cho, K.; Sohn, Y. Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment. Mater. Charact. 2018, 143, 5–17. [Google Scholar] [CrossRef]
- Maamoun, A.H.; Elbestawi, M.; Dosbaeva, G.K.; Veldhuis, S.C. Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder. Addit. Manuf. 2018, 21, 234–247. [Google Scholar] [CrossRef]
- Prashanth, K.G.; Scudino, S.; Klauss, H.J.; Surreddi, K.B.; Löber, L.; Wang, Z.; Chaubey, A.K.; Kühn, U.; Eckert, J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng. A 2014, 590, 153–160. [Google Scholar] [CrossRef]
- Fousová, M.; Dvorský, D.; Michalcová, A.; Vojtěch, D. Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures. Mater. Charact. 2018, 137, 119–126. [Google Scholar] [CrossRef]
- Chrominski, W.; Lewandowska, M. Precipitation phenomena in ultrafine grained Al–Mg–Si alloy with heterogeneous microstructure. Acta Mater. 2016, 103, 547–557. [Google Scholar] [CrossRef]
- Gall, K.; Yang, N.; Horstemeyer, M.; McDowell, D.L.; Fan, J. The debonding and fracture of Si particles during the fatigue of a cast Al-Si alloy. Metall. Mater. Trans. A 1999, 30, 3079–3088. [Google Scholar] [CrossRef]
- Edwards, P.; Ramulu, M. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater. Sci. Eng. A 2014, 598, 327–337. [Google Scholar] [CrossRef]
- Biffi, C.A.; Fiocchi, J.; Tuissi, A. Selective laser melting of AlSi10 Mg: Influence of process parameters on Mg2Si precipitation and Si spheroidization. J. Alloys Compd. 2018, 755, 100–107. [Google Scholar] [CrossRef]
- Withers, P.J.; Bhadeshia, H. Residual stress. Part 1—Measurement techniques. Mater. Sci. Technol. 2013, 17, 355–365. [Google Scholar] [CrossRef]
- Aigner, R.; Leitner, M.; Stoschka, M. On the mean stress sensitivity of cast aluminium considering imperfections. Mater. Sci. Eng. A 2019, 758, 172–184. [Google Scholar] [CrossRef]
- Townsend, A.; Senin, N.; Blunt, L.; Leach, R.K.; Taylor, J.S. Surface texture metrology for metal additive manufacturing: A review. Precis. Eng. 2016, 46, 34–47. [Google Scholar] [CrossRef]
- Masuo, H.; Tanaka, Y.; Morokoshi, S.; Yagura, H.; Uchida, T.; Yamamoto, Y.; Murakami, Y. Effects of Defects, Surface Roughness and HIP on Fatigue Strength of Ti-6Al-4V manufactured by Additive Manufacturing. Procedia Struct. Integr. 2017, 7, 19–26. [Google Scholar] [CrossRef]
- Romano, S.; Beretta, S.; Brandão, A.; Gumpinger, J.; Ghidini, T. HCF resistance of AlSi10Mg produced by SLM in relation to the presence of defects. Procedia Struct. Integr. 2017, 7, 101–108. [Google Scholar] [CrossRef]
- Romano, S.; Brückner-Foit, A.; Brandão, A.; Gumpinger, J.; Ghidini, T.; Beretta, S. Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength. Eng. Fract. Mech. 2018, 187, 165–189. [Google Scholar] [CrossRef]
- Romano, S.; Brandão, A.; Gumpinger, J.; Gschweitl, M.; Beretta, S. Qualification of AM parts: Extreme value statistics applied to tomographic measurements. Mater. Des. 2017, 131, 32–48. [Google Scholar] [CrossRef] [Green Version]
- Greitemeier, D.; Dalle Donne, C.; Syassen, F.; Eufinger, J.; Melz, T. Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V. Mater. Sci. Technol. 2015, 32, 629–634. [Google Scholar] [CrossRef]
- Pegues, J.; Roach, M.; Scott Williamson, R.; Shamsaei, N. Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V. Int. J. Fatigue 2018, 116, 543–552. [Google Scholar] [CrossRef]
- Da Silva, P.S.C.P.; Campanelli, L.C.; Escobar Claros, C.A.; Ferreira, T.; Oliveira, D.P.; Bolfarini, C. Prediction of the surface finishing roughness effect on the fatigue resistance of Ti-6Al-4V ELI for implants applications. Int. J. Fatigue 2017, 103, 258–263. [Google Scholar] [CrossRef]
- Wolfstieg, U.; Macherauch, E. Ursachen und Bewertung von Eigenspannungen. Chem. Ing. Tech. CIT 1973, 45, 760–770. [Google Scholar] [CrossRef]
- Kloos, K.H. Eigenspannungen, Definition und Entstehungsursachen. Mater. Werkst. 1979, 10, 293–302. [Google Scholar] [CrossRef]
Treatment | T (°C) | P (MPa) | Time (h) |
---|---|---|---|
Hot isostatic pressing | above 500 | above 100 | 2 |
Solution annealing | above 500 | - | 6 |
Age hardening | below 200 | - | 7 |
Material | Si | Fe | Cu | Mn | Mg | Al |
---|---|---|---|---|---|---|
AlSi10Mg | 9.0–11.0 | 0.55 | 0.05 | 0.45 | 0.20–0.45 | Balance |
Condition | Surface | (0 LC) | (1E7 LC) | Difference |
---|---|---|---|---|
AB | UP | 0.107 ± 0.027 | 0.106 ± 0.023 | −0.9% |
HIP | UP | 0.049 ± 0.023 | 0.054 ± 0.024 | +11.0% |
SA | UP | 0.057 ± 0.026 | - |
Condition | to | Increase | ||
---|---|---|---|---|
UP-AB | 2.81 | 0.107 | 0.301 | +281% |
UP-HIP | 2.75 | 0.049 | 0.135 | +275% |
Condition | Norm. Mean S (Frac. Surf.) | Norm. Mean S (Optical Eval.) | Deviation | Average |
---|---|---|---|---|
AB | 1.000 (Basis) | 0.926 (−7.4%) | 7.4% | 197.6 |
HIP | 0.868 (−13.2%) | 0.804 (−19.4%) | 6.2% | 243.2 |
SA | 0.852 (−14.8%) | 0.794 (−20.6%) | 5.8% | 245.5 |
Condition | Surface | Comparing AB-M | Comparing M and UP | |
AB | M | 0.253 | Basis | Basis |
AB | UP | 0.087 | −65.6% | −65.6% |
HIP | M | 0.288 | +13.8% | Basis |
HIP | UP | 0.109 | −56.9% | −62.2% |
SA | M | 0.268 | +5.9% | Basis |
SA | UP | 0.109 | −56.9% | −59.3% |
Condition | Surface | Slope FLR | Scatter Band FLR | Scatter Band LLR |
AB | M | 12.99 | 1:1.15 | 1:1.14 |
AB | UP | 5.20 | 1:1.44 | 1:1.57 |
HIP | M | 19.37 | 1:1.06 | 1:1.04 |
HIP | UP | 4.30 | 1:1.22 | 1:1.43 |
SA | M | 8.17 | 1:1.03 | 1:1.07 |
SA | UP | 4.54 | 1:1.53 | 1:1.43 |
Condition | R | |||
---|---|---|---|---|
M-HIP | −0.36 | 0.288 | 0.299 (+3.8%) | 0.321 (+11.4%) |
UP-HIP | −0.38 | 0.109 | 0.110 (+0.9%) | 0.113 (+3.7%) |
M-AB | 0.09 | 0.253 | 0.281 (+11.1%) | 0.306 (+20.9%) |
UP-AB | 0.10 | 0.087 | 0.088 (+1.0%) | 0.092 (+5.7%) |
Condition | M-HIP to M-AB | UP-HIP to UP-AB |
---|---|---|
1.064 (+6.4%) | 1.250 (+25.0%) | |
1.052 (+5.2%) | 1.228 (+22.8%) |
Condition | K (UP) | |||
AB | 0.253 | 0.281 | 2.86 | 0.098 |
HIP | 0.288 | 0.299 | 2.56 | 0.117 |
Condition | to | Difference | ||
AB | 0.087 | 0.088 | 1.114 | +11.4% |
HIP | 0.109 | 0.110 | 1.064 | +6.4% |
Condition | K (UP) | |||
AB | 0.253 | 0.306 | 2.86 | 0.107 |
HIP | 0.288 | 0.321 | 2.56 | 0.125 |
Condition | to | Difference | ||
AB | 0.087 | 0.092 | 1.163 | +16.3% |
HIP | 0.109 | 0.113 | 1.106 | +10.6% |
Condition | R | K (UP) | |||
---|---|---|---|---|---|
SA | −0.31 | 0.109 | 0.110 | 0.114 | 2.54 |
0.279 | 0.290 | 0.277 (+3.4%) | 0.277 (+3.4%) | 0.268 (Base) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneller, W.; Leitner, M.; Pomberger, S.; Springer, S.; Beter, F.; Grün, F. Effect of Post Treatment on the Microstructure, Surface Roughness and Residual Stress Regarding the Fatigue Strength of Selectively Laser Melted AlSi10Mg Structures. J. Manuf. Mater. Process. 2019, 3, 89. https://doi.org/10.3390/jmmp3040089
Schneller W, Leitner M, Pomberger S, Springer S, Beter F, Grün F. Effect of Post Treatment on the Microstructure, Surface Roughness and Residual Stress Regarding the Fatigue Strength of Selectively Laser Melted AlSi10Mg Structures. Journal of Manufacturing and Materials Processing. 2019; 3(4):89. https://doi.org/10.3390/jmmp3040089
Chicago/Turabian StyleSchneller, Wolfgang, Martin Leitner, Sebastian Pomberger, Sebastian Springer, Florian Beter, and Florian Grün. 2019. "Effect of Post Treatment on the Microstructure, Surface Roughness and Residual Stress Regarding the Fatigue Strength of Selectively Laser Melted AlSi10Mg Structures" Journal of Manufacturing and Materials Processing 3, no. 4: 89. https://doi.org/10.3390/jmmp3040089
APA StyleSchneller, W., Leitner, M., Pomberger, S., Springer, S., Beter, F., & Grün, F. (2019). Effect of Post Treatment on the Microstructure, Surface Roughness and Residual Stress Regarding the Fatigue Strength of Selectively Laser Melted AlSi10Mg Structures. Journal of Manufacturing and Materials Processing, 3(4), 89. https://doi.org/10.3390/jmmp3040089