Multi-Cycle Process Signature of Laser-Induced Thermochemical Polishing
Abstract
:1. Introduction
2. Objective and Hypothesis
- The influence of various machining parameters on the material removal can be generalized by an internal thermal load.
- The surface roughness can be described by a functional correlation of the thermal load (multi-cycle Process Signature).
- The multi-cycle Process Signature is applicable to other self-passivating materials.
3. Materials and Methods
3.1. Experimental Setup
3.2 Materials and Surface Preparation
3.3. Methodology and Characterization
3.4. Definition of Loading
4. Results
4.1. Line Structuring
- No material modification (0 W to PL,th)
- Undisturbed cavities (PL,th to PL,dist)
- Disturbed material removal (>PL,dist)
4.2. Area Polishing
4.3. Material Influence
5. Discussion
5.1. Notation for Process Signatures of Multi-Cycle Loads
5.2. Internal Material Load
5.3. Multi-Cycle Process Signature of LCP
5.4. Polishing Time
6. Conclusions
- The effect of machining parameters and initial roughness are described by the “thermal load TL” and “exposure time tr”. These quantities are identified as essential material loads that determine the removal depth, roughness changes, and surface finish during LCP.
- The smoothing of titanium during LCP is described as a multi-cycle PSC by an exponential decay over exposure time. The decay rate is proportional to the square root of the thermal load.
- Applying the multi-cycle PSC on titanium, Ti6Al4V, Nitinol, Stellite 21, and metallic glass determined their thermal thresholds to: Tth = 113, 170, 127, 115, and 76 °C
- The polishing rate rA is reciprocally proportional to the square of focus diameter and square root of thermal load. The increase of the spot diameter results in an increase of the polishing rate by factor 80.
Funding
Conflicts of Interest
References
- Jawahir, I.S.; Brinksmeier, E.; M’Saoubi, R.; Aspinwall, D.K.; Outeiro, J.C.; Meyer, D.; Umbrello, D.; Jayal, A.D. Surface integrity in material removal processes: Recent advances. CIRP Ann. 2011, 60, 603–626. [Google Scholar] [CrossRef]
- M’Saoubi, R.; Outeiro, J.C.; Chandrasekaran, H.; Dillon, O.D., Jr.; Jawahir, I.S. A review of surface integrity in machining and its impact on functional performance and life of machined products. IJSM 2008, 1, 203. [Google Scholar] [CrossRef]
- Brinksmeier, E.; Meyer, D.; Heinzel, C.; Lübben, T.; Sölter, J.; Langenhorst, L.; Frerichs, F.; Kämmler, J.; Kohls, E.; Kuschel, S. Process Signatures—The Missing Link to Predict Surface Integrity in Machining. Procedia CIRP 2018, 71, 3–10. [Google Scholar] [CrossRef]
- Zhu, X.P.; Zhang, F.G.; Lei, M.K.; Guo, D.M. Material Loading in Inverse Surface Integrity Problem Solution of Cemented Carbide Component Manufacturing by Surface Modification. Procedia CIRP 2016, 45, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Sealy, M.P.; Liu, Z.Y.; Guo, Y.B.; Liu, Z.Q. Energy based process signature for surface integrity in hard milling. J. Mater. Process. Technol. 2016, 238, 284–289. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, Z.; Zhang, W.; Xiao, H.; Xu, X. Experiment Study of Rapid Laser Polishing of Freeform Steel Surface by Dual-Beam. Coatings 2019, 9, 324. [Google Scholar] [CrossRef]
- Wei, C.; Li, L.; Zhang, X.; Chueh, Y.-H. 3D printing of multiple metallic materials via modified selective laser melting. CIRP Ann. 2018, 67, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Grez, J.A.; Bourell, D.L. Reducing surface roughness of metallic freeform-fabricated parts using non-tactile finishing methods. IJMPT 2004, 21, 297. [Google Scholar] [CrossRef]
- Perry, T.L.; Werschmoeller, D.; Li, X.; Pfefferkorn, F.E.; Duffie, N.A. Pulsed laser polishing of micro-milled Ti6Al4V samples. J. Manuf. Process. 2009, 11, 74–81. [Google Scholar] [CrossRef]
- Obeidi, M.A.; McCarthy, E.; O’Connell, B.; Ul Ahad, I.; Brabazon, D. Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting. Materials 2019, 12, 991. [Google Scholar] [CrossRef]
- Temmler, A.; Willenborg, E.; Wissenbach, K. Laser Polishing. In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII; Hennig, G., Xu, X., Gu, B., Nakata, Y., Eds.; SPIE: Bellingham, WA, USA, 2012; pp. 82–430. [Google Scholar]
- Pfefferkorn, F.E.; Duffie, N.A.; Li, X.; Vadali, M.; Ma, C. Improving surface finish in pulsed laser micro polishing using thermocapillary flow. CIRP Ann. 2013, 62, 203–206. [Google Scholar] [CrossRef]
- Nüsser, C.; Sändker, H.; Willenborg, E. Pulsed Laser Micro Polishing of Metals using Dual-beam Technology. Phys. Procedia 2013, 41, 346–355. [Google Scholar] [CrossRef]
- Nestler, K.; Böttger-Hiller, F.; Adamitzki, W.; Glowa, G.; Zeidler, H.; Schubert, A. Plasma Electrolytic Polishing—An Overview of Applied Technologies and Current Challenges to Extend the Polishable Material Range. Procedia CIRP 2016, 42, 503–507. [Google Scholar] [CrossRef]
- Kojima, T.; Kinuta, S.; Tokunaga, J.; Wakabayashi, K.; Nakamura, T.; Yatani, T.; Sohmura, T. Large-area electron beam irradiation for surface polishing of cast titanium. Dent. Mater. J. 2009, 28, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Nowak, R.; Metev, S. Thermochemical laser etching of stainless steel and titanium in liquids. Appl. Phys. A 1996, 63, 133–138. [Google Scholar] [CrossRef]
- Puippe, J.C.; Acosta, R.E.; von Gutfeld, R.J. Investigation of Laser-Enhanced Electroplating Mechanisms. J. Electrochem. Soc. 1981, 128, 2539–2545. [Google Scholar] [CrossRef]
- Bäuerle, D. Laser Processing and Chemistry; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-17612-8. [Google Scholar]
- Eckert, S.; Vollertsen, F. Mechanisms and processing limits of surface finish using laser-thermochemical polishing. CIRP Ann. 2018, 67, 201–204. [Google Scholar] [CrossRef]
- Boyer, R.; Welsch, G.; Collings, E.W. Materials Properties Handbook. Titanium Alloys; ASM International: Materials Park, OH, USA, 1994; ISBN 0871704811. [Google Scholar]
- Deloro Setellite Group Ltd. Stellite 21 Alloy: Technical Data. Available online: http://exocor.com/downloads/product-datasheets/Stellite-21-Datasheet.pdf (accessed on 17 October 2019).
- Materion Corp. Bulk Metallic Glass: Data Sheet; Materion Corp: Mayfield Heights, OH, USA, 2018. [Google Scholar]
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271. [Google Scholar] [CrossRef]
- Kügler, H. Effects of Short-Term Laser Beam Heating on the Absorptivity of Steel Sheets. JMMP 2019, 3, 41. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 1959; ISBN 0198533683. [Google Scholar]
- Römer, G.R.B.E.; Huis in’t Veld, A.J. Matlab Laser Toolbox. Physics Procedia 2010, 5, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Eckert, S.; Messaoudi, H.; Mehrafsun, S.; Vollersten, F. Laser-Thermochemical Induced Micro-Structures on Titanium. J. Mater. Sci. Surf. Eng. 2017, 5, 685–691. [Google Scholar]
- Brinksmeier, E.; Reese, S.; Klink, A.; Langenhorst, L.; Lübben, T.; Meinke, M.; Meyer, D.; Riemer, O.; Sölter, J. Underlying Mechanisms for Developing Process Signatures in Manufacturing. Nanomanuf. Metrol. 2018, 1, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Mehrafsun, S.; Vollertsen, F. Disturbance of material removal in laser-chemical machining by emerging gas. CIRP Ann. 2013, 62, 195–198. [Google Scholar] [CrossRef]
Label | Grade 1 3.7024 | Grade 2 3.7035 | Ti6Al4V 3.7165 | Nitinol | Metallic Glass | Stellite 21 |
---|---|---|---|---|---|---|
Elements (%) | Ti: 99.5 | Ti: 99.3 | Ti: 89.4 Al: 6.1 V: 4.0 | Ni: 55.8 Ti: 44.2 | Zr: 62.5 Cu: 31.0 Al: 3.3 Ni: 3.2 | Co: 62.3 Cr: 27.0 Mo: 5.5 Ni:2.8 |
Density ρ (kg/m3) | 4510 | 4510 | 4430 | 6500 | 6900 | 8360 |
Therm. cond. K (W/mK) | 25 | 25 | 7 | 10 | 13 | 15 |
Heat capacity cp (J/K) | 523 | 523 | 560 | 320 | 419 | 404 |
Absorp. α (%) | 39 | 39 | 37 | 30 | 26 | 27 |
Absorp. αA.b. (%) | 68 | 68 | 72 | 61 | 51 | 46 |
First Step: Line Structuring | Second Step: Area Polishing | Third Step: Material Influence | |
---|---|---|---|
Material | Ti-Grade 1 | Ti-Grade 1 | (Table 1) |
Initial surface | Rolled | Rolled, Abrasive bla.: 1, 3, 6 s Turned: 4, 6 mm/min | Abrasive bla.: 6 s |
PL (W) | 0.5, …, 7.8 | 2, …, 3 | 1, …, 3 |
df (μm) | 31, 68, 110, 156 | 110 | 110 |
N (1) | 1, …, 600 | 1, …, 400 | 1, …, 400 |
v (mm/s) | 2, 4, 8, 16 | 2 | 2 |
B (μm) | - | 35 | 35 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eckert, S. Multi-Cycle Process Signature of Laser-Induced Thermochemical Polishing. J. Manuf. Mater. Process. 2019, 3, 90. https://doi.org/10.3390/jmmp3040090
Eckert S. Multi-Cycle Process Signature of Laser-Induced Thermochemical Polishing. Journal of Manufacturing and Materials Processing. 2019; 3(4):90. https://doi.org/10.3390/jmmp3040090
Chicago/Turabian StyleEckert, Sandro. 2019. "Multi-Cycle Process Signature of Laser-Induced Thermochemical Polishing" Journal of Manufacturing and Materials Processing 3, no. 4: 90. https://doi.org/10.3390/jmmp3040090
APA StyleEckert, S. (2019). Multi-Cycle Process Signature of Laser-Induced Thermochemical Polishing. Journal of Manufacturing and Materials Processing, 3(4), 90. https://doi.org/10.3390/jmmp3040090