Spark Plasma Sintering of Electric Discharge Machinable 1.5Yb-1.5Sm-TZP-WC Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mechanical Properties
3.2. Electrical Conductivity
3.3. Microstructure
3.4. Raman-Spectroscopy
3.5. Phase Composition
3.6. Electric Discharge Machining
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, K.J.; Kim, K.M.; Kim, Y.-W. Highly conductive SiC ceramics containing Ti2CN. J. Eur. Ceram. Soc. 2014, 34, 1149–1154. [Google Scholar] [CrossRef]
- Landfried, R.; Kern, F.; Burger, W.; Leonhardt, W.; Gadow, R. Development of Electrical Discharge Machinable ZTA Ceramics with 24 vol% of TiC, TiN, TiCN, TiB2 and WC as Electrically Conductive Phase. Int. J. Appl. Ceram. Technol. 2013, 10, 509–518. [Google Scholar] [CrossRef]
- Liu, C.-C.; Huang, J.-L. Effect of the electrical discharge machining on strength and reliability of TiN/Si3N4 composites. Ceram. Int. 2003, 29, 679–687. [Google Scholar] [CrossRef]
- Bellosi, A.; Guicciardi, S.; Tampieri, A. Development and characterization of electroconductive Si3N4-TiN composites. J. Eur. Ceram. Soc. 1992, 9, 83–93. [Google Scholar] [CrossRef]
- Bonny, K.; de Baets, P.; Vleugels, J.; van der Biest, O.; Lauwers, B.; Liu, W. EDM machinability and dry sliding friction of WC-Co cemented carbides. IJMR 2009, 4, 375. [Google Scholar] [CrossRef]
- Iwanek, H.; Grathwohl, G.; Hamminger, R.; Brugger, N. Machining of ceramics by different methods. In Ceramic Materials and Components for Engines, Proceedings of the Second International Symposium, Lübeck-Travemünde, FRG, 14–17 April 1986; Bunk, W., Ed.; Deutsche Keramische Gesellschaft: Bad Honnef, Germany, 1986; pp. 417–423. ISBN 3-925543-01-5. [Google Scholar]
- König, W.; Dauw, D.F.; Levy, G.; Panten, U. EDM-Future Steps towards the Machining of Ceramics. CIRP Ann. —Manuf. Technol. 1988, 37, 623–631. [Google Scholar] [CrossRef]
- Kelly, J.R.; Denry, I. Stabilized zirconia as a structural ceramic: An overview. Dent. Mater. 2008, 24, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Perez Delgado, Y.; Bonny, K.; de Baets, P.; Neis, P.D.; Malek, O.; Vleugels, J.; Lauwers, B. Impact of wire-EDM on dry sliding friction and wear of WC-based and ZrO2-based composites. Wear 2011, 271, 1951–1961. [Google Scholar] [CrossRef]
- Gommeringer, A.; Schmitt-Radloff, U.; Ninz, P.; Kern, F.; Klocke, F.; Schneider, S.; Holsten, M.; Klink, A. ED-machinable Ceramics with Oxide Matrix: Influence of Particle Size and Volume Fraction of the Electrical Conductive Phase on the Mechanical and Electrical Properties and the EDM Characteristics. Procedia CIRP 2018, 68, 22–27. [Google Scholar] [CrossRef]
- Klocke, F.; König, W. Fertigungsverfahren 3: Abtragen, Generieren und Lasermaterialbearbeitung, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 3-540-23492-6. [Google Scholar]
- Scherera, G.W. Sintering with Rigid Inclusions. J. Am. Ceram Soc. 1987, 70, 719–725. [Google Scholar] [CrossRef]
- Munir, Z.A.; Anselmi-Tamburini, U.; Ohyanagi, M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 2006, 41, 763–777. [Google Scholar] [CrossRef]
- Guillon, O.; Gonzalez-Julian, J.; Dargatz, B.; Kessel, T.; Schierning, G.; Räthel, J.; Herrmann, M. Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Adv. Eng. Mater. 2014, 16, 830–849. [Google Scholar] [CrossRef]
- Girardini, L.; Zadra, M.; Casari, F.; Molinari, A. SPS, binderless WC powders, and the problem of sub carbide. Met. Powder Rep. 2008, 63, 18–22. [Google Scholar] [CrossRef]
- Tokita, M. Development of Large-Size Ceramic/Metal Bulk FGM Fabricated by Spark Plasma Sintering. MSF 1999, 308-311, 83–88. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, J.; Pan, Y.; Du, Y. Spark plasma sintering of W-10Ti high-purity sputtering target: Densification mechanism and microstructure evolution. Int. J. Refract. Met. Hard Mater. 2020, 92, 105313. [Google Scholar] [CrossRef]
- Tokita, M. Progress of Spark Plasma Sintering (SPS) Method, Systems, Ceramics Applications and Industrialization. Ceramics 2021, 4, 160–198. [Google Scholar] [CrossRef]
- Anselmi-Tamburini, U.; Garay, J.E.; Munir, Z.A. Fast low-temperature consolidation of bulk nanometric ceramic materials. Scr. Mater. 2006, 54, 823–828. [Google Scholar] [CrossRef]
- Muroi, M.; Trotter, G.; McCormick, P.G.; Kawahara, M.; Tokita, M. Preparation of nano-grained zirconia ceramics by low-temperature, low-pressure spark plasma sintering. J. Mater Sci. 2008, 43, 6376–6384. [Google Scholar] [CrossRef]
- Schmitt-Radloff, U.; Kern, F.; Gadow, R. Spark plasma sintering and hot pressing of ZTA-NbC materials—A comparison of mechanical and electrical properties. J. Eur. Ceram. Soc. 2018, 38, 4003–4013. [Google Scholar] [CrossRef]
- Schmitt-Radloff, U.; Kern, F.; Gadow, R. Manufacturing of electrical discharge machinable ZTA-TiC—Hot pressing vs. spark plasma sintering. J. Eur. Ceram. Soc. 2018, 38, 3585–3594. [Google Scholar] [CrossRef]
- Obradović, N.; Kern, F. Properties of 3Y-TZP zirconia ceramics with graphene addition obtained by spark plasma sintering. Ceram. Int. 2018, 44, 16931–16936. [Google Scholar] [CrossRef]
- Gallardo-López, Á.; Muñoz-Ferreiro, C.; López-Pernía, C.; Jiménez-Piqué, E.; Gutiérrez-Mora, F.; Morales-Rodríguez, A.; Poyato, R. Critical Influence of the Processing Route on the Mechanical Properties of Zirconia Composites with Graphene Nanoplatelets. Materials 2020, 14, 108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiao, G.; Yi, M.; Xu, C. Effect of graphene orientation on microstructure and mechanical properties of silicon nitride ceramics. Processing Appl. Ceram. 2018, 12, 27–35. [Google Scholar] [CrossRef]
- Muñoz-Ferreiro, C.; López-Pernía, C.; Gallardo-López, Á.; Poyato, R. Unravelling the optimization of few-layer graphene crystallinity and electrical conductivity in ceramic composites by Raman spectroscopy. J. Eur. Ceram. Soc. 2021, 41, 290–298. [Google Scholar] [CrossRef]
- Ünsal, H.; Grasso, S.; Kovalčíková, A.; Hanzel, O.; Tatarková, M.; Dlouhý, I.; Tatarko, P. In-situ graphene platelets formation and its suppression during reactive spark plasma sintering of boron carbide/titanium diboride composites. J. Eur. Ceram. Soc. 2021, 41, 6281–6289. [Google Scholar] [CrossRef]
- Miranzo, P.; Ramírez, C.; Román-Manso, B.; Garzón, L.; Gutiérrez, H.R.; Terrones, M.; Ocal, C.; Osendi, M.I.; Belmonte, M. In situ processing of electrically conducting graphene/SiC nanocomposites. J. Eur. Ceram. Soc. 2013, 33, 1665–1674. [Google Scholar] [CrossRef]
- Gommeringer, A. Erodierbare Hochleistungskeramiken mit Zirkoniumdioxidmatrix. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2021. [Google Scholar]
- Rapp, M.; Gommeringer, A.; Kern, F. Electrical Discharge Machinable Ytterbia Samaria Co-Stabilized Zirconia Tungsten Carbide Composites. Ceramics 2021, 4, 408–420. [Google Scholar] [CrossRef]
- Chantikul, P.; Anstis, G.R.; Lawn, B.R.; Marshall, D.B. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method. J. Am. Ceram. Soc. 1981, 64, 539–543. [Google Scholar] [CrossRef]
- Toraya, H.; Yoshimura, M.; Somiya, S. Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction. J. Am. Ceram. Soc. 1984, 67, C119–C121. [Google Scholar] [CrossRef]
- Balberg, I.; Azulay, D.; Toker, D.; Millo, O. Percolation and Tunneling in Composite Materials. Int. J. Mod. Phys. B 2004, 18, 2091–2121. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Cao, X.; Feng, M.; Lan, G. Vibrational properties of graphene and graphene layers. J. Raman Spectrosc. 2009, 40, 1791–1796. [Google Scholar] [CrossRef]
- Paipetis, A.S. Stress Induced Changes in the Raman Spectrum of Carbon Nanostructures and Their Composites. In Carbon Nanotube Enhanced Aerospace Composite Materials; Springer: Dordrecht, Netherlands, 2013; pp. 185–217. [Google Scholar]
- Gallardo-Lopez, A.; Muñoz-Ferreiro, C.; López-Pernía, C.; Moriche, R.; Gommeringer, A.; Kern, F.; Poyato, R. Highly efficient electrical discharge machining of yttria-stabilized zirconia ceramics with graphene nanostructures as fillers. J. Am. Ceram. Soc. Submitt. 2022, 777, 213–224. [Google Scholar]
- Haberko, K.; Pedzich, Z.; Dutkiewicz, J.; Faryna, M.; Kowal, A. Microstructure Of The Particulate Composites In The (Y) TZP—WC System. In Ceramic Microstructures; Tomsia, A.P., Glaeser, A.M., Eds.; Springer US: Boston, MA, USA, 1998; pp. 741–748. ISBN 978-1-4613-7462-6. [Google Scholar]
- Liu, H.-L.; Man, Z.-Y.; Liu, J.-X.; Wang, X.-G.; Zhang, G.-J. Solid solution and densification behavior of zirconium oxycarbide (ZrCxOy) ceramics via doping ZrO2 and Zr in ZrC. J. Alloy. Compd. 2017, 729, 492–497. [Google Scholar] [CrossRef]
- Nayak, N.; Dash, T.; Debasish, D.; Palei, B.B.; Rout, T.K.; Bajpai, S.; Nayak, B.B. A novel WC–W2C composite synthesis by arc plasma melt cast technique: Microstructural and mechanical studies. SN Appl. Sci. 2021, 3, 1–8. [Google Scholar] [CrossRef]
- Kurlov, A.S.; Gusev, A.I. Tungsten carbides and W-C phase diagram. Inorg. Mater 2006, 42, 121–127. [Google Scholar] [CrossRef]
- Tamura, T.; Urata, Y. Decomposition Behavior of Tungsten Carbide in Cemented Carbide Machined by EDM. J. Jpn. Soc. Electr. Mach. Eng. 2016, 50, 205–211. [Google Scholar] [CrossRef]
Machine Setting | Discharge Current (A) 1 | Pulse Duration (µs) 1 |
---|---|---|
CS1 | 3.9; 4.05; 4.2 | 3.7; 3.7; 3.65 |
CS2 | 7.15; 7.85; 8.35 | 5.1; 4.6; 4.4 |
CS3 | 10.25; 10.25; 11.65 | 6.75; 5.5; 5.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walter, E.; Rapp, M.; Kern, F. Spark Plasma Sintering of Electric Discharge Machinable 1.5Yb-1.5Sm-TZP-WC Composites. J. Manuf. Mater. Process. 2022, 6, 28. https://doi.org/10.3390/jmmp6020028
Walter E, Rapp M, Kern F. Spark Plasma Sintering of Electric Discharge Machinable 1.5Yb-1.5Sm-TZP-WC Composites. Journal of Manufacturing and Materials Processing. 2022; 6(2):28. https://doi.org/10.3390/jmmp6020028
Chicago/Turabian StyleWalter, Ella, Maximilian Rapp, and Frank Kern. 2022. "Spark Plasma Sintering of Electric Discharge Machinable 1.5Yb-1.5Sm-TZP-WC Composites" Journal of Manufacturing and Materials Processing 6, no. 2: 28. https://doi.org/10.3390/jmmp6020028
APA StyleWalter, E., Rapp, M., & Kern, F. (2022). Spark Plasma Sintering of Electric Discharge Machinable 1.5Yb-1.5Sm-TZP-WC Composites. Journal of Manufacturing and Materials Processing, 6(2), 28. https://doi.org/10.3390/jmmp6020028