Microstructural and Mechanical Characterization of Ledeburitic AISI D2 Cold-Work Tool Steel in Semisolid Zones via Direct Partial Remelting Process
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Liquid Fraction Profile and Transformations of Phases
3.1.1. Thermodynamic Modelling Using JMatPro
3.1.2. Differential Scanning Calorimetry
3.2. Structural Investigations
3.3. Phase Identification
3.4. Mechanical Properties
4. Conclusions
- (1)
- Reheating into the semisolid region in the DPRM process supplied sufficient interfacial energy for the grain boundaries of the recrystallized structure to grow, while the presence of carbides prevented excessive grain size. The penetration of liquid towards grain boundaries is facilitated and promoted with a high eutectic volume fraction during the liquation process.
- (2)
- Increasing the isothermal heating temperature makes the liquid phase distribute, surround the grain boundaries, and disperse more equally to produce globular grain. Globular-shaped grains are considered as an essential requirement for successful thixoforming. Therewith, most of original carbides were dissolved with increasing heating temperature while new eutectic carbides were re-precipitated along grain boundaries during subsequent cooling by diffusing carbide-forming elements into the grain boundaries
- (3)
- The solid-state transformations above the eutectoid temperature at 1300 °C consisted mainly of the solid γ phase, while cooling down from 1300 °C temperature results initially in the transformation of the remaining liquid into eutectic (L→γ + M7C3). It is well known that maintaining stable austenite against transformation to martensitic at low temperatures relies on the alloying element concentration in the material, especially on the carbon and chromium.
- (4)
- Metastable austenite transformation contributes to the enhancement of AISI D2 mechanical properties. Where they increased after the application of a direct partial remelting (hardness of 220 Hv to 350 Hv, tensile strength of 791 MPa to 961 MPa). The fracture surfaces after DPRM exhibited a different morphology compared to the as-received samples; the former showed an intergranular (typically dimple) fracture mode along the liquidus–solidus contact and grain boundaries.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, Y.; Sugiyama, S.; Yanagimoto, J. Microstructural evolution during RAP process and deformation behavior of semi-solid SKD61 tool steel. J. Mater. Process. Technol. 2012, 212, 1731–1741. [Google Scholar] [CrossRef]
- Spencer, D.B.; Mehrabian, R.; Flemings, M.C. Rheological behavior of Sn-15 pct Pb in the crystallization range. Met. Mater. Trans. A 1972, 3, 1925–1932. [Google Scholar] [CrossRef]
- Fan, Z. Semisolid metal processing. Int. Mater. Rev. 2002, 47, 49–85. [Google Scholar] [CrossRef]
- Salleh, M.S.; Omar, M.Z.; Syarif, J.; Alhawari, K.S.; Mohammed, M.N. Microstructure and mechanical properties of thixoformed A319 aluminium alloy. Mater. Des. 2014, 64, 142–152. [Google Scholar] [CrossRef]
- Mohammed, M.N.; Omar, M.Z.; Sajuri, Z.; Salleh, M.S.; Alhawari, K.S. Trend and Development of Semisolid Metal Joining Processing. Adv. Mater. Sci. Eng. 2015, 2015, 846138. [Google Scholar] [CrossRef] [Green Version]
- Alhawari, K.S.; Omar, M.Z.; Ghazali, M.J.; Salleh, M.S.; Mohammed, M.N. Evaluation of the microstructure and dry sliding wear behaviour of thixoformed A319 aluminium alloy. Mater. Des. 2015, 76, 169–180. [Google Scholar] [CrossRef]
- Arif, M.A.M.; Omar, M.Z.; Muhamad, N.; Syarif, J.; Kapranos, P. Microstructural Evolution of Solid-solution-treated Zn–22Al in the Semisolid State. J. Mater. Sci. Technol. 2013, 29, 765–774. [Google Scholar] [CrossRef]
- Eugênio José Zoqui, A.S.R. Hipólito Domingo Carvajal Fals: Microstructure of Thixoformable Hypoeutectic Cast Iron. Solid State Phenom. 2012, 192–193, 219–224. [Google Scholar]
- Mohammed, M.N.; Omar, M.Z.; Salleh, M.S.; Alhawari, K.S. Study on Thixojoining Process Using Partial Remelting Method. Adv. Mater. Sci. Eng. 2013, 2013, 251472. [Google Scholar] [CrossRef] [Green Version]
- Roca, A.S.; Fals, H.D.C.; Pedron, J.A.; Zoqui, E.J. Thixoformability of hypoeutectic gray cast iron. J. Mater. Process. Technol. 2012, 212, 1225–1235. [Google Scholar] [CrossRef] [Green Version]
- Omar, M.Z.; Atkinson, H.V.; Kapranos, P. Thixotropy in Semisolid Steel Slurries under Rapid Compression. Met. Mater. Trans. A 2011, 42, 2807–2819. [Google Scholar] [CrossRef]
- Uhlenhaut, D.I.; Kradolfer, J.; Püttgen, W.; Löffler, J.F.; Uggowitzer, P.J. Structure and properties of a hypoeutectic chromium steel processed in the semi-solid state. Acta Mater. 2006, 54, 2727–2734. [Google Scholar] [CrossRef]
- Püttgen, W.; Hallstedt, B.; Bleck, W.; Löffler, J.F.; Uggowitzer, P.J. On the microstructure and properties of 100Cr6 steel processed in the semi-solid state. Acta Mater. 2007, 55, 6553–6560. [Google Scholar] [CrossRef]
- Meng, Y.; Sugiyama, S.; Soltanpour, M.; Yanagimoto, J. Effects of predeformation and semi-solid processing on microstructure and mechanical properties of Cr–V–Mo steel. J. Mater. Process. Technol. 2013, 213, 426–433. [Google Scholar] [CrossRef]
- Li, J.-Y.; Sugiyama, S.; Yanagimoto, J. Microstructural evolution and flow stress of semi-solid type 304 stainless steel. J. Mater. Process. Technol. 2005, 161, 396–406. [Google Scholar] [CrossRef]
- Omar, M.Z.; Alfan, A.; Syarif, J.; Atkinson, H.V. Microstructural investigations of XW-42 and M2 tool steels in semi-solid zones via direct partial remelting route. J. Mater. Sci. 2011, 46, 7696–7705. [Google Scholar] [CrossRef]
- Wang, Y.; Bi, S.; Song, R.; Yanagimoto, J.; Taylor, T. Extremely high temperature carbide precipitation induced intragranular acicular ferrite transformation of M2 steel during semi-solid cooling. Mater. Lett. 2022, 310, 131516. [Google Scholar] [CrossRef]
- De Freitas, C.C.; Caram, R.; Campo, K.N. Semisolid deformation behavior and processing of CoCrCuxFeNi high-entropy alloys. Intermetallics 2022, 150, 107682. [Google Scholar] [CrossRef]
- Chang, Z.; Wang, X.; Wu, Y.; Peng, L.; Ding, W. Review on criteria for assessing the processability of semisolid alloys. Mater. Lett. 2020, 282, 128835. [Google Scholar] [CrossRef]
- Mohammed, M.N.; Omar, M.Z.; Salleh, M.S.; Alhawari, K.S.; Kapranos, P. A Study of Microstructure Properties of AISI D2 Tool Steel in Partial Re-Melting Method. Appl. Mech. Mater. 2014, 699, 76–80. [Google Scholar] [CrossRef]
- Mohammed, M.N.; Omar, M.Z.; Salleh, M.S.; Alhawari, K.S.; Kapranos, P. Semisolid Metal Processing Techniques for Nondendritic Feedstock Production. Sci. World J. 2013, 2013, 752175. [Google Scholar] [CrossRef] [PubMed]
- Jirková, H.; Rubešová, K.; Konopík, P.; Opatová, K. Effect of the Parameters of Semi-Solid Processing on the Elimination of Sharp-Edged Primary Chromium Carbides from Tool Steel. Metals 2018, 8, 713. [Google Scholar] [CrossRef] [Green Version]
- Meengam, C.; Sillapasa, K. Evaluation of Optimization Parameters of Semi-Solid Metal 6063 Aluminum Alloy from Friction Stir Welding Process Using Factorial Design Analysis. J. Manuf. Mater. Process. 2020, 4, 123. [Google Scholar] [CrossRef]
- Nakowong, K.; Sillapasa, K. Optimized Parameter for Butt Joint in Friction Stir Welding of Semi-Solid Aluminum Alloy 5083 Using Taguchi Technique. J. Manuf. Mater. Process. 2021, 5, 88. [Google Scholar] [CrossRef]
- Ritter, E.P.; Stumpf, F.T. Finite-element simulation of semi-solid metal processing of tool steel encased in carbon steel. Simulation 2022, 98, 563–574. [Google Scholar] [CrossRef]
- Binesh, B.; Aghaie-Khafri, M.; Shaban, M.; Fardi-Ilkhchy, A. Microstructural Evolution and Mechanical Properties of 7075 Aluminium Alloy during Semi-Solid Compression Deformation. Crystals 2022, 12, 1119. [Google Scholar]
- Hirt, G.; Khizhnyakova, L.; Baadjou, R.; Knauf, F.; Kopp, R. Semi-Solid Forming of Aluminium and Steel–Introduction and Overview. In Thixoforming; Wiley-VCH GmbH & Co. KGaA: Aachen, Germany, 2019; pp. 1–27. [Google Scholar]
- Bombac, D.; Fazarinc, M.; Podder, A.S.; Kugler, G. Study of Carbide Evolution During Thermo-Mechanical Processing of AISI D2 Tool Steel. J. Mater. Eng. Perform. 2013, 22, 742–747. [Google Scholar] [CrossRef]
- Püttgen, W.; Hallstedt, B.; Bleck, W.; Uggowitzer, P.J. On the microstructure formation in chromium steels rapidly cooled from the semi-solid state. Acta Mater. 2007, 55, 1033–1042. [Google Scholar] [CrossRef]
- Mohammed, M.N.; Omar, M.Z.; Syarif, J.; Sajuri, Z.; Salleh, M.S.; Alhawari, K.S. Microstructural Evolution during DPRM Process of Semisolid Ledeburitic D2 Tool Steel. Sci. World J. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Omar, M.Z.; Atkinson, H.V.; Howe, A.A.; Palmiere, E.J.; Kapranos, P.; Ghazali, M.J. Solid–liquid structural break-up in M2 tool steel for semi-solid metal processing. J. Mater. Sci. 2009, 44, 869–874. [Google Scholar] [CrossRef]
- Mohammed, M.N.; Omar, M.Z.; Syarif, J.; Salleh, M.S. Morphological evolution during partial re-melting of AISI D2 Cold-Work Tool Steel. Sains Malays. 2014, 43, 1213–1219. [Google Scholar]
- Bhadeshia, H.; Honeycombe, R. Steels: Microstructure and Properties, 3rd ed.; Butterworths-Heinemann: Cambridge, UK, 2006. [Google Scholar]
- Aisman, D.; Jirkova, H.; Kucerova, L.; Masek, B. Metastable structure of austenite base obtained by rapid solidification in a semi-solid state. J. Alloys Compd. 2011, 509 (Suppl. 1), S312–S315. [Google Scholar] [CrossRef]
Element | Experimental | Nominal (ASM 1998) |
---|---|---|
C | 1.55 | 1.4–1.6 |
Si | 0.258 | 0.6 (max) |
Mn | 0.239 | 0.6 (max) |
P | 0.025 | |
S | 0.01 | |
Cr | 11.2 | 11–13 |
Ni | 0.197 | 0.3 (max) |
Mo | 0.79 | 0.7–1.2 |
V | 0.85 | 1.1 (max) |
W | 0.2 | |
Cu | 0.08 | |
Fe | Balance | Balance |
C | Si | Mn | P | S | V | Mo | W | Ni | Cr | Fe | Phase | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pt 1 | 6.03 | 0.1 | 0.34 | 0.08 | 0.03 | 5.07 | 1.46 | 0.29 | 0.07 | 45.95 | 40.58 | M7C3 |
Pt 2 | 6.70 | 0.16 | 0.49 | 0.02 | 0.24 | 5.52 | 1.57 | 0.10 | 0.09 | 44.51 | 40.62 | M7C3 |
Pt 3 | 1.61 | 0.27 | 0.35 | 0.02 | 0.02 | 0.3 | 0.29 | 0.45 | 0.29 | 9.2 | 87.20 | α |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, M.N.; Omar, M.Z.; Jameel Al-Tamimi, A.N.; Sultan, H.S.; Abbud, L.H.; Al-Zubaidi, S.; Abdullah, O.I.; Abdulrazaq, M. Microstructural and Mechanical Characterization of Ledeburitic AISI D2 Cold-Work Tool Steel in Semisolid Zones via Direct Partial Remelting Process. J. Manuf. Mater. Process. 2023, 7, 11. https://doi.org/10.3390/jmmp7010011
Mohammed MN, Omar MZ, Jameel Al-Tamimi AN, Sultan HS, Abbud LH, Al-Zubaidi S, Abdullah OI, Abdulrazaq M. Microstructural and Mechanical Characterization of Ledeburitic AISI D2 Cold-Work Tool Steel in Semisolid Zones via Direct Partial Remelting Process. Journal of Manufacturing and Materials Processing. 2023; 7(1):11. https://doi.org/10.3390/jmmp7010011
Chicago/Turabian StyleMohammed, M. N., M. Z. Omar, Adnan Naji Jameel Al-Tamimi, Hakim S. Sultan, Luay Hashem Abbud, Salah Al-Zubaidi, Oday I. Abdullah, and M. Abdulrazaq. 2023. "Microstructural and Mechanical Characterization of Ledeburitic AISI D2 Cold-Work Tool Steel in Semisolid Zones via Direct Partial Remelting Process" Journal of Manufacturing and Materials Processing 7, no. 1: 11. https://doi.org/10.3390/jmmp7010011
APA StyleMohammed, M. N., Omar, M. Z., Jameel Al-Tamimi, A. N., Sultan, H. S., Abbud, L. H., Al-Zubaidi, S., Abdullah, O. I., & Abdulrazaq, M. (2023). Microstructural and Mechanical Characterization of Ledeburitic AISI D2 Cold-Work Tool Steel in Semisolid Zones via Direct Partial Remelting Process. Journal of Manufacturing and Materials Processing, 7(1), 11. https://doi.org/10.3390/jmmp7010011