Convexity and Surface Quality Enhanced Curved Slicing for Support-Free Multi-Axis Fabrication
Abstract
:1. Introduction
2. RBF Field-Based Curved Layer Decomposition
2.1. Overview
2.2. RBF Interpolation
- The number of RBF centres
- The RBF centre weights
- The RBF centre locations
- The RBF kernel type
2.3. RBF Weighted Fabrication Sequence Field
2.4. Iso-Surface Extraction
2.5. Manufacturability Constraint Evaluation Models
2.5.1. High-Risk Local Shape Feature Detection
2.5.2. Volumetric Error Approximation
2.5.3. Boundary Overhang Angle
3. Multi-Objective Optimisation and Multi-Axis Fabrication Path Generation
3.1. Multi-Objective GA Model for Field Optimisation
3.1.1. Optimisation Variable Setting
- Number of RBF centres (NB)
- RBF centre locations
- RBF centre weights
3.1.2. Objective Functions
3.1.3. Constraints for Optimisation
3.2. Multi-Axis Tool Path Design
4. Results and Discussion
4.1. The Fabrication System
4.2. Simulation Results
4.3. Layer-Only Comparison with the Geodesic Field-Based Slicing
4.4. Physically Fabricated 3D Models
4.5. Limitations
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Livesu, M.; Ellero, S.; Martínez, J.; Lefebvre, S.; Attene, M. From 3D models to 3D prints: An overview of the processing pipeline. Comput. Graph. Forum 2017, 36, 537–564. [Google Scholar] [CrossRef] [Green Version]
- Mohan Pandey, P.; Venkata Reddy, N.; Dhande, S.G. Slicing procedures in layered manufacturing: A review. Rapid Prototyp. J. 2003, 9, 274–288. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.M.; Zanni, C.; Kobbelt, L. Improved surface quality in 3D printing by optimizing the printing direction. Comput. Graph. Forum 2016, 35, 59–70. [Google Scholar] [CrossRef]
- Kulkarni, P.; Dutta, D. An accurate slicing procedure for layered manufacturing. CAD Comput. Aided Des. 1996, 28, 683–697. [Google Scholar] [CrossRef]
- Alexander, P.; Allen, S.; Dutta, D. Part orientation and build cost determination in layered manufacturing. CAD Comput. Aided Des. 1998, 30, 343–356. [Google Scholar] [CrossRef]
- Keating, S.; Oxman, N. Compound fabrication: A multi-functional robotic platform for digital design and fabrication. Robot. Comput.-Integr. Manuf. 2013, 29, 439–448. [Google Scholar] [CrossRef]
- Pan, Y.; Zhou, C.; Chen, Y.; Partanen, J. Multitool and Multi-Axis Computer Numerically Controlled Accumulation for Fabricating Conformal Features on Curved Surfaces. J. Manuf. Sci. Eng. 2014, 136, 031007. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Dai, C.; Fang, G.; Liu, Y.J.; Wang, C.C. RoboFDM: A robotic system for support-free fabrication using FDM. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 1175–1180. [Google Scholar] [CrossRef]
- Wu, C.; Dai, C.; Fang, G.; Liu, Y.J.; Wang, C.C. General Support-Effective Decomposition for Multi-Directional 3-D Printing. IEEE Trans. Autom. Sci. Eng. 2020, 17, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Qiu, S.; Zhu, L.; Feng, R.; Tian, Y.; Xi, J.; Zheng, Y. Toward Support-Free 3D Printing: A Skeletal Approach for Partitioning Models. IEEE Trans. Vis. Comput. Graph. 2018, 24, 2799–2812. [Google Scholar] [CrossRef]
- Xu, K.; Chen, L.; Tang, K. Support-Free Layered Process Planning Toward 3 + 2-Axis Additive Manufacturing. IEEE Trans. Autom. Sci. Eng. 2019, 16, 838–850. [Google Scholar] [CrossRef]
- Chakraborty, D.; Aneesh Reddy, B.; Roy Choudhury, A. Extruder path generation for Curved Layer Fused Deposition Modeling. CAD Comput. Aided Des. 2008, 40, 235–243. [Google Scholar] [CrossRef]
- Etienne, J.; Ray, N.; Panozzo, D.; Hornus, S.; Wang, C.C.; Martínez, J.; Lefebvre, S. Curvislicer: Slightly curved slicing for 3-axis printers. ACM Trans. Graph. 2019, 38, 81. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.; Wang, C.C.; Wu, C.; Lefebvre, S.; Fang, G.; Liu, Y.J. Support-free volume printing by multi-axis motion. ACM Trans. Graph. 2018, 37, 134. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Li, Y.; Chen, L.; Tang, K. Curved layer based process planning for multi-axis volume printing of freeform parts. CAD Comput. Aided Des. 2019, 114, 51–63. [Google Scholar] [CrossRef]
- Li, Y.; Tang, K.; He, D.; Wang, X. Multi-Axis Support-Free Printing of Freeform Parts with Lattice Infill Structures. CAD Comput. Aided Des. 2021, 133, 102986. [Google Scholar] [CrossRef]
- Mitropoulou, I.; Bernhard, M.; Dillenburger, B. Print Paths Key-framing. Symp. Comput. Fabr. ACM 2020, 1145, 3424630. [Google Scholar] [CrossRef]
- Fang, G.; Zhang, T.; Zhong, S.; Chen, X.; Zhong, Z.; Wang, C.C. Reinforced FDM: Multi-axis filament alignment with controlled anisotropic strength. ACM Trans. Graph. 2020, 39, 204. [Google Scholar] [CrossRef]
- Xie, F.; Jing, X.; Zhang, C.; Chen, S.; Bi, D.; Li, Z.; Tang, K. Volume decomposition for multi-axis support-free and gouging-free printing based on ellipsoidal slicing. CAD Comput. Aided Des. 2022, 143, 103135. [Google Scholar] [CrossRef]
- Li, Y.; He, D.; Yuan, S.; Tang, K.; Zhu, J. Vector field-based curved layer slicing and path planning for multi-axis printing. Robot. Comput.-Integr. Manuf. 2022, 77, 102362. [Google Scholar] [CrossRef]
- Hardy, R.L. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 1971, 76, 1905–1915. [Google Scholar] [CrossRef]
- Crane, K.; Weischedel, C.; Wardetzky, M. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 2013, 32, 152. [Google Scholar] [CrossRef] [Green Version]
- Alexa, M.; Herholz, P.; Kohlbrenner, M.; Sorkine-Hornung, O. Properties of Laplace Operators for Tetrahedral Meshes. Comput. Graph. Forum 2020, 39, 55–68. [Google Scholar] [CrossRef]
- Botsch, M.; Kobbelt, L. A remeshing approach to multiresolution modeling. ACM Int. Conf. Proceeding Ser. 2004, 71, 185–192. [Google Scholar] [CrossRef]
- Koenderink, J.J.; van Doorn, A.J. Surface shape and curvature scales. Image Vis. Comput. 1992, 10, 557–564. [Google Scholar] [CrossRef]
- Dolenc, A.; Mäkelä, I. Slicing procedures for layered manufacturing techniques. Comput.-Aided Des. 1994, 26, 119–126. [Google Scholar] [CrossRef]
- Cormier, D.; Unnanon, K.; Sanii, E. Specifying non-uniform cusp heights as a potential aid for adaptive slicing. Rapid Prototyp. J. 2000, 6, 204–211. [Google Scholar] [CrossRef]
- Masood, S.H.; Rattanawong, W.; Iovenitti, P. A generic algorithm for a best part orientation system for complex parts in rapid prototyping. J. Mater. Process. Technol. 2003, 139, 110–116. [Google Scholar] [CrossRef]
- Wasserfall, F.; Hendrich, N.; Zhang, J. Adaptive slicing for the FDM process revisited. In Proceedings of the IEEE International Conference on Automation Science and Engineering, Xi’an, China, 20–23 August 2017; pp. 49–54. [Google Scholar] [CrossRef]
- Botsch, M.; Kobbelt, L.; Pauly, M.; Alliez, P.; Lévy, B. Polygon Mesh Processing; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Surazhsky, V.; Surazhsky, T.; Kirsanov, D.; Gortler, S.J.; Hoppe, H. Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 2005, 24, 553–560. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Fang, G.; Tian, Y.; Wang, C.C.L. Singularity aware motion planning for multi-axis additive manufacturing. IEEE Robot. Autom. Lett. 2021, 6, 6172–6179. [Google Scholar] [CrossRef]
3D Model | Number of Tetrahedrons | Layer Decomposition Method | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Planar | Geodesic | RBF-Based (Our Method) | ||||||||
VO | VU | VE | VO | VU | VE | VO | VU | VE | ||
Kitten | 100,045 | 435 | - | 5.89 | 115 | 1539 | 3.42 | 86 | 900 | 2.21 |
2-genus | 105,911 | 580 | - | 6.2 | 302 | 1150 | 4.3 | 166 | 592 | 3.8 |
Nintendo | 135,913 | 996 | - | 7.85 | 502 | 1288 | 4.71 | 382 | 992 | 4.02 |
3-genus | 138,746 | 289 | - | 4.12 | 153 | 1473 | 1.8 | 81 | 837 | 1.05 |
3D Model | Number of RBF Centres (NB) | ||||||||
---|---|---|---|---|---|---|---|---|---|
2–3 | 4–6 | 8–10 | |||||||
VO | VU | VE | VO | VU | VE | VO | VU | VE | |
Kitten | 102 | 979 | 2.32 | 98 | 941 | 2.29 | 86 | 900 | 2.11 |
2-genus | 252 | 744 | 5.9 | 210 | 682 | 5.06 | 166 | 592 | 3.8 |
Nintendo | 411 | 1019 | 6.85 | 382 | 992 | 4.12 | 371 | 921 | 4.08 |
3-genus | 123 | 993 | 1.58 | 112 | 941 | 1.45 | 81 | 837 | 1.05 |
3D Models | Nozzle Orientation Vector Tuning Parameters | Fabrication Time (Hours) | |
---|---|---|---|
Kitten | 0.35 | 0.65 | 7.1 |
2-genus | 0.61 | 0.39 | 3.9 |
Nintendo | 0.4 | 0.6 | 7.8 |
3-genus | 0.42 | 0.58 | 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayakody, D.P.V.J.; Lau, T.Y.; Goonetilleke, R.S.; Tang, K. Convexity and Surface Quality Enhanced Curved Slicing for Support-Free Multi-Axis Fabrication. J. Manuf. Mater. Process. 2023, 7, 9. https://doi.org/10.3390/jmmp7010009
Jayakody DPVJ, Lau TY, Goonetilleke RS, Tang K. Convexity and Surface Quality Enhanced Curved Slicing for Support-Free Multi-Axis Fabrication. Journal of Manufacturing and Materials Processing. 2023; 7(1):9. https://doi.org/10.3390/jmmp7010009
Chicago/Turabian StyleJayakody, Don Pubudu Vishwana Joseph, Tak Yu Lau, Ravindra Stephen Goonetilleke, and Kai Tang. 2023. "Convexity and Surface Quality Enhanced Curved Slicing for Support-Free Multi-Axis Fabrication" Journal of Manufacturing and Materials Processing 7, no. 1: 9. https://doi.org/10.3390/jmmp7010009
APA StyleJayakody, D. P. V. J., Lau, T. Y., Goonetilleke, R. S., & Tang, K. (2023). Convexity and Surface Quality Enhanced Curved Slicing for Support-Free Multi-Axis Fabrication. Journal of Manufacturing and Materials Processing, 7(1), 9. https://doi.org/10.3390/jmmp7010009