Modeling of Energy Consumption and Print Time for FDM 3D Printing Using Multilayer Perceptron Network
Abstract
:1. Introduction
2. FDM 4D Printing
3. Related Works
4. Design of Experiment
- INP1: the view taken into consideration for printing according to the vertical axis.
- INP2: the surface of the object according to the orientation.
- INP3: the calculation of the facets of the object according to the orientation.
- INP4: length of the maximum segment of the object cut along the horizontal axis.
- INP5: length of the maximum segment of the object cut along the vertical axis.
- INP6: length of the maximum segment of the object cut along the Z-axis.
- INP7: The calculated volume of the object that is sliced regardless of the support material.
- INP8: the volume of the sliced object, taking into account the support material.
- INP9: the weight of the filament consumed from the sliced object printing, taking into account the support material.
- INP10: the weight associated with the support filament consumed in printing the cut object.
- INP11: the expected printing time of the STL object.
- INP12: the number referring to the layers of the STL object.
5. Methodology
5.1. Multilayer Perceptron (MLP)
- The formula for the weighted sum of neuron j is
- The output is obtained by applying the activation function according to the following formula:
5.2. XGBoost
5.3. Random Forest Regression
5.4. Support Vector Machines (SVM)
6. Model Comparison and Validation
7. Adopted Model
8. Discussion
- Part 1 must be printed in direction 90; if printing is done in another direction, a loss of 0 h 20 min in terms of time and 25 Watt in terms of energy will occur.
- Part 2 should be printed in direction 90; if printing is done in another direction, a loss of 0 h 20 min in terms of time and 40 Watt in terms of energy will occur.
- Part 3 should be printed in direction 0; if printing is done in another direction, a loss of 1 h 30 min in terms of time and 250 Watt in terms of energy will occur.
- Part 4 should be printed in direction 0; if printing is done in another direction, a loss of 0 h 15 min in terms of time and 23 Watt in terms of energy will occur.
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wohlers Report 2023–Wohlers Associates. Available online: https://wohlersassociates.com/product/wr2023/ (accessed on 16 June 2023).
- Han, Q.; Setchi, R.; Evans, S.L. Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting. Powder Technol. 2016, 297, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Riddle, M.; Graziano, D.; Warren, J.; Das, S.; Nimbalkar, S.; Cresko, J.; Masanet, E. Energy and emissions saving potential of additive manufacturing: The case of lightweight aircraft components. J. Clean. Prod. 2016, 135, 1559–1570. [Google Scholar] [CrossRef] [Green Version]
- Arifin, N.A.M.; Saman, M.Z.M.; Sharif, S.; Ngadiman, N.H.A. Sustainability Implications of Additive Manufacturing. In Human-Centered Technology for a Better Tomorrow; Hassan, M.H.A., Ahmad Manap, Z., Baharom, M.Z., Johari, N.H., Jamaludin, U.K., Jalil, M.H., Mat Sahat, I., Omar, M.N., Eds.; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2022; pp. 441–452. ISBN 9789811641145. [Google Scholar]
- Vidakis, N.; Kechagias, J.D.; Petousis, M.; Vakouftsi, F.; Mountakis, N. The effects of FFF 3D printing parameters on energy consumption. Mater. Manuf. Process. 2023, 38, 915–932. [Google Scholar] [CrossRef]
- Chaudhary, R.; Fabbri, P.; Leoni, E.; Mazzanti, F.; Akbari, R.; Antonini, C. Additive manufacturing by digital light processing: A review. Prog. Addit. Manuf. 2023, 8, 331–351. [Google Scholar] [CrossRef]
- F42 Committee. Terminology for Additive Manufacturing Technologies; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Kellens, K.; Baumers, M.; Gutowski, T.G.; Flanagan, W.; Lifset, R.; Duflou, J.R. Environmental Dimensions of Additive Manufacturing: Mapping Application Domains and Their Environmental Implications. J. Ind. Ecol. 2017, 21, S49–S68. [Google Scholar] [CrossRef] [Green Version]
- ISO/ASTM 52900:2021; Additive Manufacturing—General Principles—Fundamentals and Vocabulary. Available online: https://www.iso.org/standard/74514.html (accessed on 1 July 2023).
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-030-56126-0. [Google Scholar]
- Godec, D.; Pilipović, A.; Breški, T.; Ureña, J.; Jordá, O.; Martínez, M.; Gonzalez-Gutierrez, J.; Schuschnigg, S.; Blasco, J.R.; Portolés, L. Introduction to Additive Manufacturing. In A Guide to Additive Manufacturing; Godec, D., Gonzalez-Gutierrez, J., Nordin, A., Pei, E., Ureña Alcázar, J., Eds.; Springer Tracts in Additive Manufacturing; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 1–44. ISBN 978-3-031-05862-2. [Google Scholar]
- Verhoef, L.A.; Budde, B.W.; Chockalingam, C.; García Nodar, B.; Van Wijk, A.J.M. The effect of additive manufacturing on global energy demand: An assessment using a bottom-up approach. Energy Policy 2018, 112, 349–360. [Google Scholar] [CrossRef]
- Song, R.; Telenko, C. Material and energy loss due to human and machine error in commercial FDM printers. J. Clean. Prod. 2017, 148, 895–904. [Google Scholar] [CrossRef]
- Lalegani Dezaki, M.; Mohd Ariffin, M.K.A.; Hatami, S. An overview of fused deposition modelling (FDM): Research, development and process optimisation. Rapid Prototyp. J. 2021, 27, 562–582. [Google Scholar] [CrossRef]
- Hegab, H.; Khanna, N.; Monib, N.; Salem, A. Design for sustainable additive manufacturing: A review. Sustain. Mater. Technol. 2023, 35, e00576. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Lee, J.-Y.; Kim, H.-S.; Kim, M.-S.; Kim, E.-S.; Shin, Y.-J.; Chu, W.-S.; Ahn, S.-H. A comparison of energy consumption in bulk forming, subtractive, and additive processes: Review and case study. Int. J. Precis. Eng. Manuf.-Green Technol. 2014, 1, 261–279. [Google Scholar] [CrossRef]
- Rejeski, D.; Zhao, F.; Huang, Y. Research Needs and Recommendations on Environmental Implications of Additive Manufacturing. Addit. Manuf. 2017, 19, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, N.; Jiang, L.; Brooks, H. Energy consumption of common desktop additive manufacturing technologies. Clean. Eng. Technol. 2021, 2, 100068. [Google Scholar] [CrossRef]
- Ajay, J.; Song, C.; Rathore, A.S.; Zhou, C.; Xu, W. 3DGates: An Instruction-Level Energy Analysis and Optimization of 3D Printers. In Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems, Xi’an, China, 4 April 2017; pp. 419–433. [Google Scholar]
- Weissman, A.; Gupta, S.K. Selecting a Design-Stage Energy Estimation Approach for Manufacturing Processes. In Proceedings of the 23rd International Conference on Design Theory and Methodology, Washington, DC, USA, 28–31 August 2011; Volume 9, pp. 1075–1086. [Google Scholar]
- Tian, X.; Wu, L.; Gu, D.; Yuan, S.; Zhao, Y.; Li, X.; Ouyang, L.; Song, B.; Gao, T.; He, J.; et al. Roadmap for Additive Manufacturing: Toward Intellectualization and Industrialization. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100014. [Google Scholar] [CrossRef]
- Qin, J.; Liu, Y.; Grosvenor, R. Multi-source data analytics for AM energy consumption prediction. Adv. Eng. Inform. 2018, 38, 840–850. [Google Scholar] [CrossRef]
- Yang, Y.; He, M.; Li, L. Power consumption estimation for mask image projection stereolithography additive manufacturing using machine learning based approach. J. Clean. Prod. 2020, 251, 119710. [Google Scholar] [CrossRef]
- Jia, S.; Yuan, Q.; Cai, W.; Li, M.; Li, Z. Energy modeling method of machine-operator system for sustainable machining. Energy Convers. Manag. 2018, 172, 265–276. [Google Scholar] [CrossRef]
- r3DiM Benchmark. Available online: https://www.kaggle.com/dataset/c22f9996866156344599fd5baf48aaa8ac8ccce9a849b050ceeea36ba4e9c8f9 (accessed on 25 June 2022).
- Rahmatabadi, D.; Aberoumand, M.; Soltanmohammadi, K.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. 4D Printing-Encapsulated Polycaprolactone–Thermoplastic Polyurethane with High Shape Memory Performances. Adv. Eng. Mater. 2023, 25, 2201309. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Aberoumand, M.; Soltanmohammadi, K.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Zolfagharian, A.; Bodaghi, M.; Baghani, M. A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structures. Polymers 2022, 14, 5446. [Google Scholar] [CrossRef]
- Aberoumand, M.; Soltanmohammadi, K.; Soleyman, E.; Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. A comprehensive experimental investigation on 4D printing of PET-G under bending. J. Mater. Res. Technol. 2022, 18, 2552–2569. [Google Scholar] [CrossRef]
- Monzón, M.D.; Paz, R.; Pei, E.; Ortega, F.; Suárez, L.A.; Ortega, Z.; Alemán, M.E.; Plucinski, T.; Clow, N. 4D printing: Processability and measurement of recovery force in shape memory polymers. Int. J. Adv. Manuf. Technol. 2017, 89, 1827–1836. [Google Scholar] [CrossRef] [Green Version]
- Bodaghi, M.; Damanpack, A.R.; Liao, W.H. Adaptive metamaterials by functionally graded 4D printing. Mater. Des. 2017, 135, 26–36. [Google Scholar] [CrossRef]
- Cerbe, F.; Sinapius, M.; Böl, M. Methodology for FDM 4D printing with thermo-responsive SMPs. Mater. Today Proc. 2022, in press. [Google Scholar] [CrossRef]
- Peng, T. Analysis of Energy Utilization in 3D Printing Processes. Procedia CIRP 2016, 40, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Quantifying the Overall Impact of Additive Manufacturing on Energy Demand: The Case of Selective Laser-Sintering Processes for Automotive and Aircraft Components. Available online: https://www.eceee.org/library/conference_proceedings/eceee_Industrial_Summer_Study/2016/2-sustainable-production-design-and-supply-chain-initiatives/quantifying-the-overall-impact-of-additive-manufacturing-on-energy-demand-the-case-of-selective-laser-sintering-processes-for-automotive-and-aircraft-components/ (accessed on 8 August 2022).
- Yan, Z.; Huang, J.; Lv, J.; Hui, J.; Liu, Y.; Zhang, H.; Yin, E.; Liu, Q. A New Method of Predicting the Energy Consumption of Additive Manufacturing considering the Component Working State. Sustainability 2022, 14, 3757. [Google Scholar] [CrossRef]
- Harding, O.J.; Griffiths, C.A.; Rees, A.; Pletsas, D. Methods to Reduce Energy and Polymer Consumption for Fused Filament Fabrication 3D Printing. Polymers 2023, 15, 1874. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y. Energy, time and material consumption modelling for fused deposition modelling process. Procedia CIRP 2020, 90, 510–515. [Google Scholar] [CrossRef]
- Petousis, M.; Vidakis, N.; Mountakis, N.; Karapidakis, E.; Moutsopoulou, A. Compressive response versus power consumption of acrylonitrile butadiene styrene in material extrusion additive manufacturing: The impact of seven critical control parameters. Int. J. Adv. Manuf. Technol. 2023, 126, 1233–1245. [Google Scholar] [CrossRef]
- Monteiro, H.; Carmona-Aparicio, G.; Lei, I.; Despeisse, M. Energy and material efficiency strategies enabled by metal additive manufacturing–A review for the aeronautic and aerospace sectors. Energy Rep. 2022, 8, 298–305. [Google Scholar] [CrossRef]
- Baumers, M.; Tuck, C.; Wildman, R.; Ashcroft, I.; Rosamond, E.; Hague, R. Transparency Built-in. J. Ind. Ecol. 2013, 17, 418–431. [Google Scholar] [CrossRef]
- Meteyer, S.; Xu, X.; Perry, N.; Zhao, Y.F. Energy and Material Flow Analysis of Binder-jetting Additive Manufacturing Processes. Procedia CIRP 2014, 15, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Rai, R.; Lab, D. Energy Efficient Modeling and Optimization of Additive Manufacturing Processes. In Proceedings of the 24th International SFF Symposium—An Additive Manufacturing Conference, SFF, Austin, TX, USA, 12–14 August 2013; Available online: https://hdl.handle.net/2152/88493 (accessed on 25 June 2022).
- Yang, Y.; Li, L.; Pan, Y.; Sun, Z. Energy Consumption Modeling of Stereolithography-Based Additive Manufacturing Toward Environmental Sustainability. J. Ind. Ecol. 2017, 21, S168–S178. [Google Scholar] [CrossRef] [Green Version]
- Simon, T.R.; Lee, W.J.; Spurgeon, B.E.; Boor, B.E.; Zhao, F. An Experimental Study on the Energy Consumption and Emission Profile of Fused Deposition Modeling Process. Procedia Manuf. 2018, 26, 920–928. [Google Scholar] [CrossRef]
- Luo, Y.; Leu, M.C.; Ji, Z. Assessment of Environmental Performance of Rapid Prototyping and Rapid Tooling Processes. In Proceedings of the 10th Annual Solid Freeform Fabrication Symposium, Austin, TX, USA, 9–11 August 1999; pp. 783–791. [Google Scholar]
- Jackson, M.; Asten, A.; Morrow, J.; Min, S.; Pfefferkorn, F. Comparison of Energy Consumption in Wire-based and Powder-based Additive-subtractive Manufacturing. Procedia Manuf. 2016, 5, 989–1005. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Hu, F.; Liu, Y.; Witherell, P.; Wang, C.C.L.; Rosen, D.W.; Simpson, T.W.; Lu, Y.; Tang, Q. Research and application of machine learning for additive manufacturing. Addit. Manuf. 2022, 52, 102691. [Google Scholar] [CrossRef]
- Kumar, R.; Ghosh, R.; Malik, R.; Sangwan, K.S.; Herrmann, C. Development of Machine Learning Algorithm for Characterization and Estimation of Energy Consumption of Various Stages during 3D Printing. Procedia CIRP 2022, 107, 65–70. [Google Scholar] [CrossRef]
- Hu, F.; Qin, J.; Li, Y.; Liu, Y.; Sun, X. Deep Fusion for Energy Consumption Prediction in Additive Manufacturing. Procedia CIRP 2021, 104, 1878–1883. [Google Scholar] [CrossRef]
- McComb, C.; Meisel, N.; Simpson, T.W.; Murphy, C. Predicting Part Mass, Required Support Material, and Build Time via Autoencoded Voxel Patterns; Pennsylvania State University: State College, PA, USA, 2018; Available online: https://engrxiv.org/preprint/view/247 (accessed on 25 June 2022). [CrossRef] [Green Version]
- El youbi El idrissi, M.A.; Laaouina, L.; Jeghal, A.; Tairi, H.; Zaki, M. Energy Consumption Prediction for Fused Deposition Modelling 3D Printing Using Machine Learning. Appl. Syst. Innov. 2022, 5, 86. [Google Scholar] [CrossRef]
- Szemeti, G.; Ramanujan, D. An Empirical Benchmark for Resource Use in Fused Deposition Modelling 3D Printing of Isovolumetric Mechanical Components. Procedia CIRP 2022, 105, 183–191. [Google Scholar] [CrossRef]
- Durgashyam, K.; Indra Reddy, M.; Balakrishna, A.; Satyanarayana, K. Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method. Mater. Today Proc. 2019, 18, 2052–2059. [Google Scholar] [CrossRef]
- Guessasma, S.; Belhabib, S.; Nouri, H. Printability and Tensile Performance of 3D Printed Polyethylene Terephthalate Glycol Using Fused Deposition Modelling. Polymers 2019, 11, 1220. [Google Scholar] [CrossRef] [Green Version]
- Pernica, J.; Sustr, M.; Dostal, P.; Brabec, M.; Dobrocky, D. Tensile Testing of 3D Printed Materials Made by Different Temperature. Manuf. Technol. 2021, 21, 398–404. [Google Scholar] [CrossRef]
- Qi, X.; Chen, G.; Li, Y.; Cheng, X.; Li, C. Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives. Engineering 2019, 5, 721–729. [Google Scholar] [CrossRef]
- Kwon, O.; Kim, H.G.; Ham, M.J.; Kim, W.; Kim, G.-H.; Cho, J.-H.; Kim, N.I.; Kim, K. A deep neural network for classification of melt-pool images in metal additive manufacturing. J. Intell. Manuf. 2020, 31, 375–386. [Google Scholar] [CrossRef]
- Dreyfus, G.; Martinez, J.-M.; Samuelides, M.; Gordon, M.B.; Badran, F.; Thiria, S.; Hérault, L. Réseaux de Neurones. Librairie Eyrolles. Available online: https://www.eyrolles.com/Informatique/Livre/reseaux-de-neurones-9782212110197 (accessed on 25 June 2022).
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Huang, Y. Advances in Artificial Neural Networks–Methodological Development and Application. Algorithms 2009, 2, 973–1007. [Google Scholar] [CrossRef] [Green Version]
- Haykin, S.S. Neural Networks and Learning Machines; Pearson International Edition; Pearson: London, UK, 2009; Available online: https://books.google.co.ma/books?id=KCwWOAAACAAJ (accessed on 25 June 2022).
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv:1710.05941. [Google Scholar]
- Rosenblatt, F. Perceptron Simulation Experiments. Proc. IRE 1960, 48, 301–309. [Google Scholar] [CrossRef]
- Chauvin, Y.; Rumelhart, D.E. (Eds.) Backpropagation: Theory, Architectures, and Applications; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1995; p. 561. ISBN 978-0-8058-1258-9. [Google Scholar]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef]
- Haykin, S.S.; Haykin, S.S. Neural Networks and Learning Machines, 3rd ed.; Prentice Hall: New York, NY, USA, 2009; ISBN 978-0-13-147139-9. [Google Scholar]
- Corriou, J.-P.; Société de Chimie Industrielle; Société Française de Génie des Procédés. Journée D’étude Modélisation, Conduite et Diagnostic de Procédés Industriels à l’aide de Réseaux de Neurones; Organisée Conjointement par le GFGP et la Société de Chimie Industrielle, 29 Mars 1995; Coordonnateur Jean Pierre Corriou; Lavoisier Technique et Documentation: Paris, France, 1995; ISBN 2-910239-11-X. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, Y.; Wen, Y.; Ren, Y. Data-driven XGBoost model for maximum stress prediction of additive manufactured lattice structures. Complex Intell. Syst. 2023, 1–12. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Fan, Z.; Fu, Q.; Li, M.; Faiz, M.A.; Ali, S.; Li, T.; Zhang, L.; Khan, M.I. Random forest regression evaluation model of regional flood disaster resilience based on the whale optimization algorithm. J. Clean. Prod. 2020, 250, 119468. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995; ISBN 978-1-4757-2440-0. [Google Scholar]
Input Order | Input Parameters FDM | Intervals of Values |
---|---|---|
INP1 | “Orientation” [degree] | 0; 90; 180 |
INP2 | “Stl surface area” [mm2] | [1533.85–10,850.92] |
INP3 | “Number of facets” | [40–9368] |
INP4 | “Sliced X” [mm] | [3.23–153.87] |
INP5 | “Sliced Y” [mm] | [8.45–67.27] |
INP6 | “Sliced Z” [mm] | [3.23–153.87] |
INP7 | “Sliced volume” [mm3] | [2142.39–5852.08] |
INP8 | “Sliced volume including support” [mm3] | [2171.28–11,376.59] |
INP9 | “Total Filament” [g] | [2.76–14.45] |
INP10 | “Support Filament” [g] | [0–8.13] |
INP11 | “Expected print time” [h] | [0.4166–4.033] |
INP12 | “Number of layers” [integer] | [21–1629] |
Model. | MAE | MSE | RMSE | R-Squared | Explained Variance |
---|---|---|---|---|---|
XGBoost | 2.57167085 | 31.7460321 | 5.63436173 | 98.4415807 | 98.4661312 |
Random Forest | 2.46675634 | 35.1311636 | 5.92715476 | 97.9773199 | 97.9841714 |
Support Vector Regression | 1.42252208 | 7.39417652 | 2.71922351 | 99.0687064 | 99.0862437 |
Proposed model (MLP) | 0.989 | 0.018 | 1.355 | 99.59 | 99.6 |
MLP Network | R2 Square | Explained-Variance | MAE | MSE | RMSE |
---|---|---|---|---|---|
12-2-2 | 99.34% | 99.56% | 1.248% | 0.03% | 1.72% |
12-6-2 | 97.55% | 97.73% | 2.004% | 0.11% | 3.314% |
12-8-2 | 97.81% | 97.95% | 1.88% | 0.098% | 3.131% |
12-12-2 | 97.94% | 98.11% | 1.908% | 0.092% | 3.036% |
12-2-4-2 | 99.59% | 99.6% | 0.989% | 0.018% | 1.355% |
12-2-11-2 | 99.4% | 99.44% | 1.133% | 0.027% | 1.638% |
12-2-12-2 | 98.83% | 98.84% | 1.377% | 0.052% | 2.289% |
12-3-2-2 | 99.51% | 99.51% | 0.973% | 0.022% | 1.479% |
12-3-6-2 | 98.25% | 98.25% | 1.466% | 0.079% | 2.802% |
12-3-8-2 | 96.96% | 96.99% | 1.595% | 0.136% | 3.691% |
12-4-4-2 | 97.21% | 97.41% | 1.765% | 0.125% | 3.535% |
12-6-13-2 | 98.25% | 98.38% | 1.887% | 0.078% | 2.801% |
12-9-6-2 | 98.17% | 98.3% | 1.706% | 0.082% | 2.864% |
Neurons of First Hidden Layer | |||
---|---|---|---|
1 | 2 | ||
Neurons of input layer | 1 | −0.01860396 | 0.01651467 |
2 | −0.39869556 | 0.02904175 | |
3 | 0.06080785 | −0.15600291 | |
4 | 0.00827086 | −0.07250348 | |
5 | −0.08958101 | 0.08917017 | |
6 | 0.24706206 | −0.14367856 | |
7 | 0.0626247 | 0.09804111 | |
8 | 0.0649894 | 0.09762235 | |
9 | −0.02316719 | 0.12844889 | |
10 | −0.12178944 | −0.03211394 | |
11 | 4.598817 | 2.9437175 | |
12 | 0.01480456 | 0.01575648 | |
biases | −0.42479023 | −3.8425364 |
Neurons of Second Hidden Layer | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
Neurons of first hidden layer | 1 | 1.7487305 | 1.1139799 | −0.8182974 | 1.1671507 |
2 | 0.9893758 | 2.1798441 | −2.780944 | 7.2701535 | |
biases | −0.72620803 | −1.2299542 | 1.136458 | −0.7672453 |
Neurons of Output Layer | |||
---|---|---|---|
1 | 2 | ||
Neurons of second hidden layer | 1 | 0.13126287 | 1.0074766 |
2 | 0.21024154 | 0.90955585 | |
3 | −0.7737203 | −1.1061413 | |
4 | 1.271458 | 0.0429178 | |
biases | −0.1821677 | −0.05179993 |
Part | Orientation (Degree) | Predicted Energy (Watt) | Actual Energy (Watt) | Error of Prediction (Energy) | Predicted Print Time (Hour) | Actual Print Time (Hour) | Error of Prediction (Print Time) |
---|---|---|---|---|---|---|---|
0 | 150.23254 | 143.864 | 0.04426778 | 1.3921772 | 1.375 | 0.01249251 | |
90 | 127.927956 | 124.446 | 0.02797965 | 1.187228 | 1.188 | 0.00064983 | |
180 | 154.8057 | 150.982 | 0.02532554 | 1.441631 | 1.423 | 0.01309276 | |
0 | 150.10175 | 152.63 | 0.01656457 | 1.3728974 | 1.36 | 0.00948338 | |
90 | 117.2996 | 111.817 | 0.0490319 | 1.089192 | 1.071 | 0.01698599 | |
180 | 151.03885 | 150.167 | 0.00580587 | 1.3892009 | 1.367 | 0.0162406 | |
0 | 124.42141 | 122.171 | 0.01842017 | 1.1680287 | 1.186 | 0.01515287 | |
90 | 282.67624 | 285.951 | 0.01145217 | 2.7901657 | 2.767 | 0.00837214 | |
180 | 170.33725 | 164.24 | 0.03712403 | 1.6079372 | 1.587 | 0.01319294 | |
0 | 95.08733 | 97.391 | 0.02365383 | 0.8763252 | 0.873 | 0.00380893 | |
90 | 102.01913 | 102.175 | 0.00152552 | 0.9368667 | 0.93 | 0.00738355 | |
180 | 118.05182 | 120.406 | 0.01955202 | 1.0821551 | 1.084 | 0.00170194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El youbi El idrissi, M.A.; Laaouina, L.; Jeghal, A.; Tairi, H.; Zaki, M. Modeling of Energy Consumption and Print Time for FDM 3D Printing Using Multilayer Perceptron Network. J. Manuf. Mater. Process. 2023, 7, 128. https://doi.org/10.3390/jmmp7040128
El youbi El idrissi MA, Laaouina L, Jeghal A, Tairi H, Zaki M. Modeling of Energy Consumption and Print Time for FDM 3D Printing Using Multilayer Perceptron Network. Journal of Manufacturing and Materials Processing. 2023; 7(4):128. https://doi.org/10.3390/jmmp7040128
Chicago/Turabian StyleEl youbi El idrissi, Mohamed Achraf, Loubna Laaouina, Adil Jeghal, Hamid Tairi, and Moncef Zaki. 2023. "Modeling of Energy Consumption and Print Time for FDM 3D Printing Using Multilayer Perceptron Network" Journal of Manufacturing and Materials Processing 7, no. 4: 128. https://doi.org/10.3390/jmmp7040128
APA StyleEl youbi El idrissi, M. A., Laaouina, L., Jeghal, A., Tairi, H., & Zaki, M. (2023). Modeling of Energy Consumption and Print Time for FDM 3D Printing Using Multilayer Perceptron Network. Journal of Manufacturing and Materials Processing, 7(4), 128. https://doi.org/10.3390/jmmp7040128