Design, Numerical and Experimental Testing of a Flexible Test Bench for High-Speed Impact Shear-Cutting with Linear Motors †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conception of the High-Speed Impact Cutting Process
2.2. Constructive Realization of the Novel Test Bench
2.3. Experimental and Numerical Studies
3. Results and Discussion
3.1. Validation of the Test Bench
3.2. Experimental and Numerical Validation of the HSIC Process
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kindsmüller, A.; Schrepfer, A.; Stahl, J.; Pätzold, I.; Nürnberger, A.; Golle, R.; Volk, W. Influence of Cutting Parameters on Mechanisms Causing Slug Pulling. Prod. Eng. 2021, 15, 833–842. [Google Scholar] [CrossRef]
- Zeidi, A.; Ben Saada, F.; Elleuch, K.; Atapek, H. AISI D2 Punch Head Damage: Fatigue and Wear Mechanism. Eng. Fail. Anal. 2021, 129, 105676. [Google Scholar] [CrossRef]
- Karbasian, H.; Tekkaya, A.E. A Review on Hot Stamping. J. Mater. Process. Technol. 2010, 210, 2103–2118. [Google Scholar] [CrossRef]
- Lu, J.; Khawarizmi, R.; Monclús, M.; Molina-Aldareguia, J.; Kwon, P.; Bieler, T.R. Effect of Cutting Speed on Shear Band Formation and Chip Morphology of Ti–6Al–4V Alloy Using Nanoindentation and EBSD Mapping. Mater. Sci. Eng. A 2023, 862, 144372. [Google Scholar] [CrossRef]
- Bohdal, Ł.; Patyk, R.; Tandecka, K.; Gontarz, S.; Jackiewicz, D. Influence of Shear-Slitting Parameters on Workpiece Formation, Cut Edge Quality and Selected Magnetic Properties for Grain-Oriented Silicon Steel. J. Manuf. Process. 2020, 56, 1007–1026. [Google Scholar] [CrossRef]
- Merklein, M.; Wieland, M.; Lechner, M.; Bruschi, S.; Ghiotti, A. Hot Stamping of Boron Steel Sheets with Tailored Properties: A Review. J. Mater. Process. Technol. 2016, 228, 11–24. [Google Scholar] [CrossRef]
- Lipiäinen, K.; Afkhami, S.; Ahola, A.; Björk, T. Evaluation of Geometrical Notch and Quality Effects in the Fatigue Strength Assessment of Ultra-High-Strength Steel Cut Edges. Structures 2022, 37, 881–892. [Google Scholar] [CrossRef]
- Gu, L.; Kang, G.; Chen, H.; Wang, M. On Adiabatic Shear Fracture in High-Speed Machining of Martensitic Precipitation-Hardening Stainless Steel. J. Mater. Process. Technol. 2016, 234, 208–216. [Google Scholar] [CrossRef]
- Hu, D.; Chen, M.; Wang, L.; Wang, H. Microstructural Characterization of Blanked Surface of C5191 Phosphor Bronze Sheet under Ultra-High-Speed Blanking. Trans. Nonferrous Met. Soc. China 2021, 31, 692–702. [Google Scholar] [CrossRef]
- Gaudillière, C.; Ranc, N.; Larue, A.; Lorong, P. Investigations in High Speed Blanking: Cutting Forces and Microscopic Observations. EPJ Web Conf. 2010, 6, 19003. [Google Scholar] [CrossRef]
- Rittel, D.; Wang, Z.G.; Dorogoy, A. Geometrical Imperfection and Adiabatic Shear Banding. Int. J. Impact Eng. 2008, 35, 1280–1292. [Google Scholar] [CrossRef]
- Goviazin, G.G.; Rittel, D. Revisiting the Hot Adiabatic Shear Band Paradigm. Int. J. Impact Eng. 2023, 180, 104702. [Google Scholar] [CrossRef]
- Rittel, D.; Wang, Z.G.; Merzer, M. Adiabatic Shear Failure and Dynamic Stored Energy of Cold Work. Phys. Rev. Lett. 2006, 96, 075502. [Google Scholar] [CrossRef]
- Uçak, N.; Aslantas, K.; Çiçek, A. The Effects of Al2O3 Coating on Serrated Chip Geometry and Adiabatic Shear Banding in Orthogonal Cutting of AISI 316L Stainless Steel. J. Mater. Res. Technol. 2020, 9, 10758–10767. [Google Scholar] [CrossRef]
- Gu, L. Mechanism Study on Adiabatic Shear Fracture Induced Isolated Segment Formation during High-Speed Machining. Procedia CIRP 2018, 77, 348–350. [Google Scholar] [CrossRef]
- Guohe, L.; Minjie, W.; Chunzheng, D. Adiabatic Shear Critical Condition in the High-Speed Cutting. J. Mater. Process. Technol. 2009, 209, 1362–1367. [Google Scholar] [CrossRef]
- Winter, S.; Nestler, M.; Galiev, E.; Hartmann, F.; Psyk, V.; Kräusel, V.; Dix, M. Adiabatic Blanking: Influence of Clearance, Impact Energy, and Velocity on the Blanked Surface. J. Manuf. Mater. Process. 2021, 5, 35. [Google Scholar] [CrossRef]
- Linnemann, M.; Scheffler, C.; Psyk, V. Numerically Assisted Design For Electromagnetically Driven Tools. Procedia Manuf. 2020, 47, 1334–1338. [Google Scholar] [CrossRef]
- Yaldız, S.; Sağlam, H.; Ünsaçar, F.; Işık, H. Design and Applications of a Pneumatic Accelerator for High Speed Punching. Mater. Des. 2007, 28, 889–896. [Google Scholar] [CrossRef]
- Mottram, A.R. High Energy Rate Forming Techniques. In Mechanical Engineer’s Reference Book; Elsevier: Amsterdam, The Netherlands, 1973; pp. 9-2–9-16. [Google Scholar]
- Vivek, A.; Daehn, G.S. Vaporizing Foil Actuator: A Versatile Tool for High Energy-Rate Metal Working. Procedia Eng. 2014, 81, 2129–2134. [Google Scholar] [CrossRef]
- Rehm, M.; Ihlenfeldt, S.; Schlegel, H.; Drossel, W.-G. Mechanically Coupled High Dynamic Linear Motors—A New Design Approach and Its Control Strategy. CIRP Ann. 2014, 63, 381–384. [Google Scholar] [CrossRef]
- Kalpakjian, S.; Schmid, S.R. Manufacturing Processes for Engineering Materials, 6th ed.; Pearson: London, UK, 2016; ISBN 978-0134290553. [Google Scholar]
- Bernstein, H. Gleichstrom-, Schritt- Und Linearmotoren. In Elektrotechnik/Elektronik für Maschinenbauer; Springer Fachmedien Wiesbaden GmbH: Wiesbaden, Germany, 2018; pp. 289–329. [Google Scholar]
- Eller, C. Kinetik Des Massenpunktsystems. In Holzmann/Meyer/Schumpich Technische Mechanik Kinematik und Kinetik; Springer Fachmedien Wiesbaden GmbH: Wiesbaden, Germany, 2019; pp. 155–168. [Google Scholar]
- VDI 2906 Blatt 2 Schnittflächenqualität beim Schneiden, Beschneiden und Lochen von Werkstücken aus Metall; Scherschneiden. VDI-Handbuch Produktionstechnik und Fertigungsverfahren—Band 2: Fertigungsverfahren, 1994.
- Galiev, E.; Winter, S.; Reuther, F.; Psyk, V.; Tulke, M.; Brosius, A.; Kräusel, V. Local Temperature Development in the Fracture Zone during Uniaxial Tensile Testing at High Strain Rate: Experimental and Numerical Investigations. Appl. Sci. 2022, 12, 2299. [Google Scholar] [CrossRef]
- Feucht, M.; Neukamm, F.; Haufe, A. A Phenomenological Damage Model to Predict Material Failure in Crashworthiness Applications. In Recent Developments and Innovative Applications in Computational Mechanics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 143–153. [Google Scholar]
- Psyk, V.; Scheffler, C.; Tulke, M.; Winter, S.; Guilleaume, C.; Brosius, A. Determination of Material and Failure Characteristics for High-Speed Forming via High-Speed Testing and Inverse Numerical Simulation. J. Manuf. Mater. Process. 2020, 4, 31. [Google Scholar] [CrossRef]
Sheet Material (Tensile Strength) | vmot = 1 m/s | vmot = 1.5 m/s | vmot = 2 m/s |
---|---|---|---|
Cu-OF R240 (240 MPa) | 5.90 m/s | 6.52 m/s | 7.11 m/s |
1.4404 (700 MPa) | 5.71 m/s | 6.35 m/s | 6.95 m/s |
HC450XD (780 MPa) | 5.68 m/s | 6.32 m/s | 6.92 m/s |
Technological Requirement | Constructive/Technological Implementation |
---|---|
Highly dynamic acceleration of the cutting punch | Principle of elastic impact; acceleration of an impact mass with linear motors |
Central localised impact on cutting tool | Selection of a frame with column-guided plates; one plate operates as the impact mass |
Variation in the cutting energy | Flexible adjustment of the motor dynamics by setting control parameters; optional variation in impact mass and additional tool masses |
Controlled absorption of dynamic forces | Use of a spring-damper system, which absorbs impact energy and transfers it to the frame over a large area |
Linear motors must not collide with stationary masses | Construction of a coupling mechanism that enables the automated pick-up and uncoupling of the impact mass |
Technological advantages compared with other test benches | |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krutz, P.; Leonhardt, A.; Graf, A.; Winter, S.; Galiev, E.; Rehm, M.; Kräusel, V.; Dix, M. Design, Numerical and Experimental Testing of a Flexible Test Bench for High-Speed Impact Shear-Cutting with Linear Motors. J. Manuf. Mater. Process. 2023, 7, 173. https://doi.org/10.3390/jmmp7050173
Krutz P, Leonhardt A, Graf A, Winter S, Galiev E, Rehm M, Kräusel V, Dix M. Design, Numerical and Experimental Testing of a Flexible Test Bench for High-Speed Impact Shear-Cutting with Linear Motors. Journal of Manufacturing and Materials Processing. 2023; 7(5):173. https://doi.org/10.3390/jmmp7050173
Chicago/Turabian StyleKrutz, Pascal, André Leonhardt, Alexander Graf, Sven Winter, Elmar Galiev, Matthias Rehm, Verena Kräusel, and Martin Dix. 2023. "Design, Numerical and Experimental Testing of a Flexible Test Bench for High-Speed Impact Shear-Cutting with Linear Motors" Journal of Manufacturing and Materials Processing 7, no. 5: 173. https://doi.org/10.3390/jmmp7050173
APA StyleKrutz, P., Leonhardt, A., Graf, A., Winter, S., Galiev, E., Rehm, M., Kräusel, V., & Dix, M. (2023). Design, Numerical and Experimental Testing of a Flexible Test Bench for High-Speed Impact Shear-Cutting with Linear Motors. Journal of Manufacturing and Materials Processing, 7(5), 173. https://doi.org/10.3390/jmmp7050173