Dynamic Mechanical Performance of Glass Microsphere-Loaded Carbon Fabric–Epoxy Composites Subjected to Accelerated UV Ageing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Accelerated Ageing
2.2. Dynamic Mechanical Analysis
2.3. Short Beam Shear Test
2.4. Charpy Impact Strength Test
3. Results and Discussion
3.1. Dynamic Mechanical Properties
3.1.1. Storage Modulus
3.1.2. Loss Modulus
3.1.3. Tan Delta
3.2. Impact Strength
3.3. Inter-Laminar Shear Strength
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Springer, G.S. Environmental Effects. In Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures; Springer: Vienna, Austria, 1994; pp. 287–314. [Google Scholar] [CrossRef]
- Deng, K.; Luo, B.; Suo, H.; Zhang, K.; Wang, L.; Cheng, H.; Liang, B. Characterization of material degradation mechanism of carbon fiber reinforced epoxy resin composites under ultraviolet radiation and salt-fog synergistic environment. Polym. Compos. 2024, 45, 805–824. [Google Scholar] [CrossRef]
- Kumar, B.G.; Singh, R.P.; Nakamura, T. Degradation of Carbon Fiber-reinforced Epoxy Composites by Ultraviolet Ra-diation and Condensation. J. Compos. Mater. 2002, 36, 2713–2733. [Google Scholar] [CrossRef]
- Golewski, P.; Sadowski, T.; Kneć, M.; Budka, M. The effect of thermal aging degradation of CFRP composite on its mechanical properties using destructive and non-destructive methods and the DIC system. Polym. Test. 2023, 118, 107902. [Google Scholar] [CrossRef]
- Lafarie-Frenot, M.; Rouquie, S. Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling. Compos. Sci. Technol. 2004, 64, 1725–1735. [Google Scholar] [CrossRef]
- Wang, M.; Cao, M.; Wang, H.; Siddique, A.; Gu, B.; Sun, B. Drop-weight impact behaviors of 3-D angle interlock woven composites after thermal oxidative aging. Compos. Struct. 2017, 166, 239–255. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, L.; Xu, Z.; Yang, F.; Hao, L.; Jiao, W.; Liu, W. Thermal Aging Behavior of Carbon Fiber/Epoxy Composites at High Temperature. Polym. Polym. Compos. 2014, 22, 309–312. [Google Scholar] [CrossRef]
- Siriruk, A.; Penumadu, D. Degradation in fatigue behavior of carbon fiber–vinyl ester based composites due to sea environment. Compos. Part B Eng. 2014, 61, 94–98. [Google Scholar] [CrossRef]
- Barbosa, A.P.C.; Fulco, A.P.P.; Guerra, E.S.; Arakaki, F.K.; Tosatto, M.; Costa, M.C.B.; Melo, J.D.D. Accelerated aging effects on carbon fiber/epoxy composites. Compos. Part B Eng. 2017, 110, 298–306. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Siddique, A.; Umair, M.; Shi, C.; Pei, X.; Liu, S.; Yin, Y.; Shi, H.; Xu, Z. Irradiation multi-scale damage and interface effects of 3D braided carbon fiber/epoxy composites subjected to high dose γ-rays. Compos. Part B Eng. 2024, 281, 111575. [Google Scholar] [CrossRef]
- Boubakri, A.; Guermazi, N.; Elleuch, K.; Ayedi, H.F. Study of UV-aging of thermoplastic polyurethane material. Mater. Sci. Eng. A 2010, 527, 1649–1654. [Google Scholar] [CrossRef]
- Brown, R.P.; Greenwood, J.H. Practical Guide to the Assessment of the Useful Life of Plastics; iSmithers Rapra Publishing: Akron, Ohio, 2002. [Google Scholar]
- Sebaey, T.A. Effect of Exposure Temperature on the Crashworthiness of Carbon/Epoxy Composite Rectangular Tubes under Quasi-Static Compression. Polymers 2020, 12, 2028. [Google Scholar] [CrossRef] [PubMed]
- Basha, M.; Wagih, A.; Khan, T.; Lubineau, G.; Sebaey, T. On the benefit of thin plies on flexural response of CFRP composites aged at elevated temperature. Compos. Part A Appl. Sci. Manuf. 2023, 166, 107393. [Google Scholar] [CrossRef]
- Wang, H.; Cao, M.; Siddique, A.; Sun, B.; Gu, B. Numerical analysis of thermal expansion behaviors and interfacial thermal stress of 3D braided composite materials. Comput. Mater. Sci. 2017, 138, 77–91. [Google Scholar] [CrossRef]
- Nema, A.; Mallineni, C.N.; Penumakala, P.K.; Adusumalli, R.; K, T.; Buragohain, M.K. Effect of temperature on flexural and interlaminar shear strength properties of carbon-epoxy composites: Experiment and modeling. Polym. Compos. 2024, 45, 9139–9155. [Google Scholar] [CrossRef]
- Afshar, A.; Mihut, D.; Chen, P. Effects of environmental exposures on carbon fiber epoxy composites protected by metallic thin films. J. Compos. Mater. 2019, 54, 167–177. [Google Scholar] [CrossRef]
- Yesu, A.; Srivastava, M.; Agnihotri, P.K.; Basu, S. Minimizing environmental degradation in fracture toughness of carbon fiber/epoxy composites using carbon nanotubes. Eng. Fract. Mech. 2024, 294, 109734. [Google Scholar] [CrossRef]
- Farsani, R.E.; Khalili, S.; Daghigh, V. Charpy impact response of basalt fiber reinforced epoxy and basalt fiber metal laminate composites: Experimental study. Int. J. Damage Mech. 2014, 23, 729–744. [Google Scholar] [CrossRef]
- Chang, H.L.; Chen, C.M.; Chen, C.H. Effects of Nano-Silica Addition on Water Absorption of Glass Fiber/Epoxy Composite. Adv. Mater. Res. 2014, 853, 40–45. [Google Scholar] [CrossRef]
- Alamri, H.; Low, I. Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Mater. Des. 2012, 42, 214–222. [Google Scholar] [CrossRef]
- Tejasvi, K.; Sharma, A.; Ranga, K.V.S.; Gurusideswar, S.; Singh, P.S. Effect of hollow glass microspheres on transverse properties of carbon fiber reinforced epoxy composites. Polym. Compos. 2024. [Google Scholar] [CrossRef]
- Paramasivam, A.; Kanny, K.; Pandurangan, M.T.; Ramachandran, V. Mechanical behavior of glass fiber-reinforced hollow glass particles filled epoxy composites under thermal loading. J. Compos. Mater. 2024, 58, 2027–2044. [Google Scholar] [CrossRef]
- Johnsen, B.; Kinloch, A.; Mohammed, R.; Taylor, A.; Sprenger, S. Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 2007, 48, 530–541. [Google Scholar] [CrossRef]
- Le Guen-Geffroy, A.; Le Gac, P.-Y.; Habert, B.; Davies, P. Physical ageing of epoxy in a wet environment: Coupling between plasticization and physical ageing. Polym. Degrad. Stab. 2019, 168, 108947. [Google Scholar] [CrossRef]
- Patel, S.; Case, S. Durability of hygrothermally aged graphite/epoxy woven composite under combined hygrothermal conditions. Int. J. Fatigue 2002, 24, 1295–1301. [Google Scholar] [CrossRef]
- Gacitua, W.; Ballerini, A.; Zhang, J. Polymer Nanocomposites: Synthetic and Natural Fillers a Review. Maderas-Cienc Tecnol. 2005, 7, 159–178. [Google Scholar] [CrossRef]
- Móczó, J.; Pukánszky, B. Polymer micro and nanocomposites: Structure, interactions, properties. J. Ind. Eng. Chem. 2008, 14, 535–563. [Google Scholar] [CrossRef]
- Shi, Z.; Zou, C.; Zhou, F.; Zhao, J. Analysis of the Mechanical Properties and Damage Mechanism of Carbon Fiber/Epoxy Composites under UV Aging. Materials 2022, 15, 2919. [Google Scholar] [CrossRef]
- He, Z.-Q.; Yang, Y.; Yu, B.; Yang, J.-P.; Jiang, X.-B.; Tian, B.; Wang, M.; Li, X.-Y.; Sun, S.-Q.; Sun, H.; et al. Research on properties of hollow glass microspheres/epoxy resin composites applied in deep rock in-situ temperature-preserved coring. Pet. Sci. 2022, 19, 720–730. [Google Scholar] [CrossRef]
- Marouani, S.; Curtil, L.; Hamelin, P. Ageing of carbon/epoxy and carbon/vinylester composites used in the reinforcement and/or the repair of civil engineering structures. Compos. Part B Eng. 2012, 43, 2020–2030. [Google Scholar] [CrossRef]
- Afzal, A.; Bangash, M.K.; Hafeez, A.; Shaker, K. Aging Effects on the Mechanical Performance of Carbon Fiber-Reinforced Composites. Int. J. Polym. Sci. 2023, 2023, 4379307. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Filho, F.d.C.G.; da Luz, F.S.; Demosthenes, L.C.d.C.; Pereira, A.C.; Colorado, H.A.; Nascimento, L.F.C.; Monteiro, S.N. Evaluation of Dynamic Mechanical Properties of Fique Fabric/Epoxy Composites. Mater. Res. 2019, 22, e20190125. [Google Scholar] [CrossRef]
- Chateauminois, A.; Vincent, L.; Chabert, B.; Soulier, J. Study of the interfacial degradation of a glass-epoxy composite during hygrothermal ageing using water diffusion measurements and dynamic mechanical thermal analysis. Polymer 1994, 35, 4766–4774. [Google Scholar] [CrossRef]
- Fim, F.d.C.; Basso, N.R.S.; Graebin, A.P.; Azambuja, D.S.; Galland, G.B. Thermal, electrical, and mechanical properties of polyethylene–graphene nanocomposites obtained by in situ polymerization. J. Appl. Polym. Sci. 2013, 128, 2630–2637. [Google Scholar] [CrossRef]
- Ishida, H.; Allen, D.J. Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer 1996, 37, 4487–4495. [Google Scholar] [CrossRef]
- Mori, K.; Hirai, N.; Ohki, Y.; Otake, Y.; Umemoto, T.; Muto, H. Effects of interaction between filler and resin on the glass transition and dielectric properties of epoxy resin nanocomposites. IET Nanodielectrics 2019, 2, 92–96. [Google Scholar] [CrossRef]
- Kumar, G.C.M.; Jeyaraj, P.; Nagamadhu, M. Dynamic mechanical analysis of glutaraldehyde cross linked polyvinyl alcohol under tensile mode. In Proceedings of the 3rd International Conference on Automotive Innovation Green Energy Vehicle: Aigev 2019, Kuantan, Malaysia, 25–26 July 2019; p. 020017. [Google Scholar]
Factor | Units | Levels | |||
---|---|---|---|---|---|
Wt% of filler | Wt% | 2 | 4 | 6 | |
Ageing of composite | Hours | 0 | 7 | ||
Fiber vol. fraction, Vf | - | 0.60 |
Filler Used | Conditioning | Wt% of Fillers | |||
---|---|---|---|---|---|
0 | 2 | 4 | 6 | ||
Glass microspheres (GMSs) | Unaged | BaseUA | GMS2UA | GMS4UA | GMS6UA |
Aged | BaseA | GMS2A | GMS4A | GMS6A |
Composite Samples | Storage Modulus | Loss Modulus | Tan δ | Tg (°C) | |
---|---|---|---|---|---|
E′ (GPa) | E″ (GPa) | By E″ Peak | By Tan Δ Peak | ||
BaseUA | 58.4 | 25.2 | 0.532 | 42.95 | 47.89 |
BaseA | 233.7 | 68.5 | 0.527 | 48.23 | 52.05 |
GMS2UA | 65.5 | 16.0 | 0.531 | 41.58 | 43.85 |
GMS2A | 57.5 | 13.3 | 0.564 | 42.79 | 50.49 |
GMS4UA | 273.9 | 69.3 | 0.579 | 40.07 | 44.99 |
GMS4A | 269.2 | 58.5 | 0.517 | 46.35 | 51.57 |
GMS6UA | 49.1 | 11.6 | 0.333 | 43.84 | 48.93 |
GMS6A | 137.1 | 26.7 | 0.392 | 46.02 | 51.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaker, K.; Asim, A.; Asghar, M.A.; Jabbar, M.; Nasreen, A.; Siddique, A. Dynamic Mechanical Performance of Glass Microsphere-Loaded Carbon Fabric–Epoxy Composites Subjected to Accelerated UV Ageing. J. Manuf. Mater. Process. 2024, 8, 224. https://doi.org/10.3390/jmmp8050224
Shaker K, Asim A, Asghar MA, Jabbar M, Nasreen A, Siddique A. Dynamic Mechanical Performance of Glass Microsphere-Loaded Carbon Fabric–Epoxy Composites Subjected to Accelerated UV Ageing. Journal of Manufacturing and Materials Processing. 2024; 8(5):224. https://doi.org/10.3390/jmmp8050224
Chicago/Turabian StyleShaker, Khubab, Anas Asim, Muhammad Ayub Asghar, Madeha Jabbar, Adeela Nasreen, and Amna Siddique. 2024. "Dynamic Mechanical Performance of Glass Microsphere-Loaded Carbon Fabric–Epoxy Composites Subjected to Accelerated UV Ageing" Journal of Manufacturing and Materials Processing 8, no. 5: 224. https://doi.org/10.3390/jmmp8050224
APA StyleShaker, K., Asim, A., Asghar, M. A., Jabbar, M., Nasreen, A., & Siddique, A. (2024). Dynamic Mechanical Performance of Glass Microsphere-Loaded Carbon Fabric–Epoxy Composites Subjected to Accelerated UV Ageing. Journal of Manufacturing and Materials Processing, 8(5), 224. https://doi.org/10.3390/jmmp8050224