The Dispersion-Strengthening Effect of TiN Nanoparticles Evoked by Ex Situ Nitridation of Gas-Atomized, NiCu-Based Alloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gas Atomization
2.2. Fluidized Bed Reactor
- The chemical composition of the powder and the gas: reactive elements with preferably low free energy of formation result in a high number of NPs,
- The initial particle size distribution of the powders: the coarser the powder, the longer it takes for the internal NP formation to fully occur throughout the whole particle,
- Their shape, sphericity and density: highly spherical and dense particles allow for homogeneous gas penetration,
- The temperature applied to the chamber: high diffusion rates correlate with increasing temperature, while disintegration of the particles due to tremendous heat exposure must be avoided.
2.3. Laser Powder Bed Fusion
- Cubes (8 × 8 × 8 mm3) for optical density measurements (VDI 3405-2), hardness testing (DIN EN ISO 6507-1), and part characterization;
- Blocks (14 × 45 × 70 mm3) for subsequent machining of tensile, fatigue, and creep specimens:
- o
- o
- Cylinders (Ø 10 mm × 50 mm) for thermal diffusivity testing.
2.4. Testing and Characterization
3. Results and Discussion
3.1. Pre-FBR: Inert Gas Atomization, Powder Post-Processing, and Powder Characterization
3.1.1. Atomization Process
3.1.2. Powder Post-Processing and Pre-FBR Powder Surface Characterization
3.1.3. Pre-FBR Powder Cross-Section Characterization
3.2. Post-FBR: Fluidized Bed Reactor and Powder Characterization
3.2.1. Post-FBR Powder Surface Characterization
3.2.2. Post-FBR Powder Cross-Section Characterization
3.2.3. Powder Cu Segregation and Nanoparticle Formation Mechanism
3.3. LPBF Parameter Optimization and Part Characterization
3.3.1. Laser Powder Bed Fusion Optimization
3.3.2. Pre- and Post-FBR Part EBSD Characterization
3.3.3. Pre- and Post-FBR Part EDS Characterization
3.3.4. Part Melt Pool Formation Mechanism
- Primary formation stage:Coarse α-TiN resulting from the atomization process (≙ pre-FBR powder state)
- Secondary formation stage:Fine β-TiN resulting from the FBR exposure (≙ post-FBR powder state)
- Tertiary formation stage:Increase in TiN (=remaining α/β-TiN from powders + γ-TiN formation within melt pool) resulting from the LPBF process (≙ post-FBR part state)
- Primary formation stage:Comparably coarse α-Al2O3 resulting from the LPBF process (≙ post-FBR part state)
3.4. Post-FBR Testing
3.4.1. Hardness and Tensile Testing
- RT: 624.4 MPa and 22.5%
- 400 °C: 577.2 MPa and 20.7%
- 550 °C: 457.4 MPa and 13.1%
- 650 °C: 321.8 MPa and 4.5%
- 750 °C: 237.4 MPa and 4.0%
3.4.2. Creep and Fatigue Testing
3.4.3. Thermal Diffusivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raffeis, I.; Adjei-Kyeremeh, F.; Vroomen, U.; Westhoff, E.; Bremen, S.; Hohoi, A.; Bührig-Polaczek, A. Qualification of a Ni–Cu Alloy for the Laser Powder Bed Fusion Process (LPBF): Its Microstructure and Mechanical Properties. Appl. Sci. 2020, 10, 3401. [Google Scholar] [CrossRef]
- Shoemaker, L.E.; Smith, G.D. A century of monel metal: 1906–2006. JOM 2006, 58, 22–26. [Google Scholar] [CrossRef]
- Special Metals Corporation. High-Performance Alloys for Resistance to Aqueous Corrosion 2000. Available online: https://www.specialmetals.com/documents/aqueous-corrosion-handbook.pdf (accessed on 18 August 2024).
- Dutta, R.S. Corrosion aspects of Ni–Cr–Fe based and Ni–Cu based steam generator tube materials. J. Nucl. Mater. 2009, 393, 343–349. [Google Scholar] [CrossRef]
- Küçük, Y.; Döleker, K.M.; Gök, M.S.; Dal, S.; Altınay, Y.; Erdoğan, A. Microstructure, hardness and high temperature wear characteristics of boronized Monel 400. Surf. Coat. Technol. 2022, 436, 128277. [Google Scholar] [CrossRef]
- Jahns, K.; Ulrich, A.S.; Schlereth, C.; Reiff, L.; Krupp, U.; Galetz, M.C. The Effect of Cu Content and Surface Finish on the Metal Dusting Resistance of Additively Manufactured NiCu Alloys. Oxid. Met. 2021, 96, 241–256. [Google Scholar] [CrossRef]
- Martin, J.H.; Yahata, B.D.; Hundley, J.M.; Mayer, J.A.; Schaedler, T.A.; Pollock, T.M. 3D printing of high-strength aluminium alloys. Nature 2017, 549, 365–369. [Google Scholar] [CrossRef]
- Ma, S.; Shang, Z.; Shang, A.; Zhang, P.; Tang, C.; Huang, Y.; Leung, C.L.A.; Lee, P.D.; Zhang, X.; Wang, X. Additive manufacturing enabled synergetic strengthening of bimodal reinforcing particles for aluminum matrix composites. Addit. Manuf. 2023, 70, 103543. [Google Scholar] [CrossRef]
- Roth, J.-P.; Šulák, I.; Chlup, Z.; Fischer-Bühner, J.; Krupp, U.; Jahns, K. The dispersion-strengthening effect of TiN evoked by in situ nitridation of NiCu-based Alloy 400 during gas atomization for laser powder bed fusion. Mater. Sci. Eng. A 2024, 893, 146129. [Google Scholar] [CrossRef]
- Horn, T.; Rock, C.; Kaoumi, D.; Anderson, I.; White, E.; Prost, T.; Rieken, J.; Saptarshi, S.; Schoell, R.; DeJong, M.; et al. Laser powder bed fusion additive manufacturing of oxide dispersion strengthened steel using gas atomized reaction synthesis powder. Mater. Des. 2022, 216, 110574. [Google Scholar] [CrossRef]
- Saptarshi, S.; deJong, M.; Rock, C.; Anderson, I.; Napolitano, R.; Forrester, J.; Lapidus, S.; Kaoumi, D.; Horn, T. Laser Powder Bed Fusion of ODS 14YWT from Gas Atomization Reaction Synthesis Precursor Powders. JOM 2022, 74, 3303–3315. [Google Scholar] [CrossRef]
- Zhang, D.; Darsell, J.T.; Wang, J.; Ma, X.; Grant, G.J.; Anderson, I.E.; Rieken, J.R.; Edwards, D.J.; Setyawan, W.; Horn, T.J.; et al. No ball milling needed: Alternative ODS steel manufacturing with gas atomization reaction synthesis (GARS) and friction-based processing. J. Nucl. Mater. 2022, 566, 153768. [Google Scholar] [CrossRef]
- Anderson, I.E.; Foley, J.C. Determining the role of surfaces and interfaces in the powder metallurgy processing of aluminum alloy powders. Surf. Interface Anal. 2001, 31, 599–608. [Google Scholar] [CrossRef]
- Pereira, T.; Kennedy, J.V.; Potgieter, J. A comparison of traditional manufacturing vs additive manufacturing, the best method for the job. Procedia Manuf. 2019, 30, 11–18. [Google Scholar] [CrossRef]
- Pérez, M.; Carou, D.; Rubio, E.M.; Teti, R. Current advances in additive manufacturing. Procedia CIRP 2020, 88, 439–444. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.W.; Stucker, B. (Eds.) Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Springer: New York, NY, USA, 2016; ISBN 978-3-030-56127-7. [Google Scholar]
- Guth, S.; Babinský, T.; Antusch, S.; Klein, A.; Kuntz, D.; Šulák, I. Creep–Fatigue Interaction of Inconel 718 Manufactured by Electron Beam Melting. Adv. Eng. Mater. 2023, 25, 2300294. [Google Scholar] [CrossRef]
- Šulák, I.; Babinský, T.; Chlupová, A.; Milovanović, A.; Náhlík, L. Effect of building direction and heat treatment on mechanical properties of Inconel 939 prepared by additive manufacturing. J. Mech. Sci. Technol. 2023, 37, 1071–1076. [Google Scholar] [CrossRef]
- Handal, R. An implementation framework for additive manufacturing in supply chains. JOSCM 2017, 10, 18–31. [Google Scholar] [CrossRef]
- Hopkinson, N.; Dicknes, P. Analysis of rapid manufacturing—Using layer manufacturing processes for production. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2003, 217, 31–39. [Google Scholar] [CrossRef]
- Safaei, K.; Abedi, H.; Nematollahi, M.; Kordizadeh, F.; Dabbaghi, H.; Bayati, P.; Javanbakht, R.; Jahadakbar, A.; Elahinia, M.; Poorganji, B. Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem. JOM 2021, 73, 3771–3786. [Google Scholar] [CrossRef]
- Cao, L.; Li, J.; Hu, J.; Liu, H.; Wu, Y.; Zhou, Q. Optimization of surface roughness and dimensional accuracy in LPBF additive manufacturing. Opt. Laser Technol. 2021, 142, 107246. [Google Scholar] [CrossRef]
- Sanchez, S.; Smith, P.; Xu, Z.; Gaspard, G.; Hyde, C.J.; Wits, W.W.; Ashcroft, I.A.; Chen, H.; Clare, A.T. Powder Bed Fusion of nickel-based superalloys: A review. Int. J. Mach. Tools Manuf. 2021, 165, 103729. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, C.; Wang, D.; Liu, W.; Fang, X.; Wellmann, D.; Zhao, Y.; Tian, Y. A Review on Laser Powder Bed Fusion of Inconel 625 Nickel-Based Alloy. Appl. Sci. 2020, 10, 81. [Google Scholar] [CrossRef]
- Pollock, T.M.; Clarke, A.J.; Babu, S.S. Design and Tailoring of Alloys for Additive Manufacturing. Met. Mater. Trans. A 2020, 51, 6000–6019. [Google Scholar] [CrossRef]
- Boes, J.; Röttger, A.; Becker, L.; Theisen, W. Processing of gas-nitrided AISI 316L steel powder by laser powder bed fusion—Microstructure and properties. Addit. Manuf. 2019, 30, 100836. [Google Scholar] [CrossRef]
- Hadraba, H.; Chlup, Z.; Dlouhy, A.; Dobes, F.; Roupcova, P.; Vilemova, M.; Matejicek, J. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater. Sci. Eng. A 2017, 689, 252–256. [Google Scholar] [CrossRef]
- Li, B.; Qian, B.; Xu, Y.; Liu, Z.; Zhang, J.; Xuan, F. Additive manufacturing of ultrafine-grained austenitic stainless steel matrix composite via vanadium carbide reinforcement addition and selective laser melting: Formation mechanism and strengthening effect. Mater. Sci. Eng. A 2019, 745, 495–508. [Google Scholar] [CrossRef]
- Li, W.; Yang, Y.; Liu, J.; Zhou, Y.; Li, M.; Wen, S.; Wei, Q.; Yan, C.; Shi, Y. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB 2 in-situ metal matrix composites prepared via selective laser melting. Acta Mater. 2017, 136, 90–104. [Google Scholar] [CrossRef]
- Dai, S.; Zhu, J.; Yan, X.; Wu, S.; Liu, Y.; Gao, X.; Fraser, H.; Hodgson, P.; Zhu, Y.; Heilmaier, M.; et al. Unique Yttria Nanoparticle Strengthening in an Inconel 718 Superalloy Fabricated by Additive Manufacturing. Adv. Mater. Technol. 2024, 9, 2301421. [Google Scholar] [CrossRef]
- Xu, R.; Geng, Z.; Wu, Y.; Chen, C.; Ni, M.; Li, D.; Zhang, T.; Huang, H.; Liu, F.; Li, R.; et al. Microstructure and mechanical properties of in-situ oxide-dispersion-strengthened NiCrFeY alloy produced by laser powder bed fusion. Adv. Powder Mater. 2022, 1, 100056. [Google Scholar] [CrossRef]
- Smith, T.M.; Kantzos, C.A.; Zarkevich, N.A.; Harder, B.J.; Heczko, M.; Gradl, P.R.; Thompson, A.C.; Mills, M.J.; Gabb, T.P.; Lawson, J.W. A 3D printable alloy designed for extreme environments. Nature 2023, 617, 513–518. [Google Scholar] [CrossRef]
- Smith, T.M.; Thompson, A.C.; Gabb, T.P.; Bowman, C.L.; Kantzos, C.A. Efficient production of a high-performance dispersion strengthened, multi-principal element alloy. Sci. Rep. 2020, 10, 9663. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Lu, Z.; Xian, J.; Chen, X.; Peng, S.; Li, X.; Li, H. Effects of Al content on microstructure and tensile properties of Ni-based ODS superalloys. J. Alloys Compd. 2023, 941, 168965. [Google Scholar] [CrossRef]
- Jang, J.; Kim, T.K.; Han, C.H.; Min, H.-K.; Jeong, S.-H.; Kim, D.H. A Preliminary Development and Characterization of Ni-based ODS Alloys. Procedia Eng. 2013, 55, 284–288. [Google Scholar] [CrossRef]
- Mirzababaei, S.; Ghayoor, M.; Doyle, R.P.; Pasebani, S. In-situ manufacturing of ODS FeCrAlY alloy via laser powder bed fusion. Mater. Lett. 2021, 284, 129046. [Google Scholar] [CrossRef]
- Ramakrishnan, T.; Espiritu, E.R.; Kwon, S.; Keshavarz, M.K.; Muniz-Lerma, J.A.; Gauvin, R.; Brochu, M. Laser powder bed fusion additive manufacturing of molybdenum using a nitrogen build atmosphere. Int. J. Refract. Met. Hard Mater. 2024, 119, 106555. [Google Scholar] [CrossRef]
- Chen, P.; Yang, C.; Li, S.; Attallah, M.M.; Yan, M. In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion. Mater. Des. 2020, 194, 108966. [Google Scholar] [CrossRef]
- Tjong, S.C. Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties. Adv. Eng. Mater. 2007, 9, 639–652. [Google Scholar] [CrossRef]
- Šulák, I.; Chlupová, A.; Záležák, T.; Kuběna, I.; Roth, J.-P.; Jahns, K.; Krupp, U.; Kruml, T. High-temperature Fatigue and Creep Performance of Additively Manufactured NiCu-based Alloy. Procedia Struct. Integr. 2024, 52, 143–153. [Google Scholar] [CrossRef]
- Narayana Samy, V.P.; Brasche, F.; Šulák, I.; Verma, B.; Nowak, B.; Chlup, Z.; Záležák, T.; Schleifenbaum, J.H.; Krupp, U.; Haase, C. The influence of microstructural heterogeneities on high-temperature mechanical properties of additively manufactured γ’-forming Ni-based alloys. Addit. Manuf. 2024, 88, 104267. [Google Scholar] [CrossRef]
- Meltzer, R.L.; Fiorini, Y.R.; Horstman, R.T.; Moore, I.C.; Batik, A.L.; Hostinsky, T.; Čadek, J. A Constant Tensile Stress Creep Testing Machine. J. Test. Eval. 1976, 4, 26. [Google Scholar] [CrossRef]
- Rettenmayr, M. Melting and remelting phenomena. Int. Mater. Rev. 2009, 54, 1–17. [Google Scholar] [CrossRef]
- Qi, H.; Zhou, X.; Li, J.; Hu, Y.; Xu, L. Performance Testing and Rapid Solidification Behavior of Stainless Steel Powders Prepared by Gas Atomization. Materials 2021, 14, 5188. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Xiao, Z.; Zou, H.; Liu, Z.; Chen, J.; Li, S.; Zhang, D. Characterization of spherical AlSi10Mg powder produced by double-nozzle gas atomization using different parameters. Trans. Nonferrous Met. Soc. China 2019, 29, 374–384. [Google Scholar] [CrossRef]
- Priyadarshi, A.; Bin Shahrani, S.; Choma, T.; Zrodowski, L.; Qin, L.; Leung, C.L.A.; Clark, S.J.; Fezzaa, K.; Mi, J.; Lee, P.D.; et al. New insights into the mechanism of ultrasonic atomization for the production of metal powders in additive manufacturing. Addit. Manuf. 2024, 83, 104033. [Google Scholar] [CrossRef]
- Pellicer, E.; Varea, A.; Sivaraman, K.M.; Pané, S.; Suriñach, S.; Baró, M.D.; Nogués, J.; Nelson, B.J.; Sort, J. Grain boundary segregation and interdiffusion effects in nickel-copper alloys: An effective means to improve the thermal stability of nanocrystalline nickel. ACS Appl. Mater. Interfaces 2011, 3, 2265–2274. [Google Scholar] [CrossRef]
- Naghash, A.R.; Etsell, T.H.; Xu, S. XRD and XPS Study of Cu−Ni Interactions on Reduced Copper−Nickel−Aluminum Oxide Solid Solution Catalysts. Chem. Mater. 2006, 18, 2480–2488. [Google Scholar] [CrossRef]
- Erdélyi, Z.; Girardeaux, C.; Tôkei, Z.; Beke, D.L.; Cserháti, C.; Rolland, A. Investigation of the interplay of nickel dissolution and copper segregation in Ni/Cu(111) system. Surf. Sci. 2002, 496, 129–140. [Google Scholar] [CrossRef]
- Guler, U.; Suslov, S.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications. Nanophotonics 2015, 4, 269–276. [Google Scholar] [CrossRef]
- Clatworthy, E.B.; Yick, S.; Murdock, A.T.; Allison, M.C.; Bendavid, A.; Masters, A.F.; Maschmeyer, T. Enhanced Photocatalytic Hydrogen Evolution with TiO 2 –TiN Nanoparticle Composites. J. Phys. Chem. C 2019, 123, 3740–3749. [Google Scholar] [CrossRef]
- Alvarez Barragan, A.; Ilawe, N.V.; Zhong, L.; Wong, B.M.; Mangolini, L. A Non-Thermal Plasma Route to Plasmonic TiN Nanoparticles. J. Phys. Chem. C 2017, 121, 2316–2322. [Google Scholar] [CrossRef]
- Tavares, J.; Coulombe, S.; Meunier, J.-L. Synthesis of cubic-structured monocrystalline titanium nitride nanoparticles by means of a dual plasma process. J. Phys. D Appl. Phys. 2009, 42, 102001. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, S.Y.; Tan, P.; Wang, J.; Xiang, C.S.; Tang, H.P. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol. 2018, 333, 38–46. [Google Scholar] [CrossRef]
- Yodoshi, N.; Endo, T.; Masahashi, N. Evaluation of Porosity in Gas-Atomized Powder by Synchrotron X-ray CT and Investigation of the Effect of Gas Species. Mater. Trans. 2021, 62, 1549–1555. [Google Scholar] [CrossRef]
- Ruan, G.; Liu, C.; Qu, H.; Guo, C.; Li, G.; Li, X.; Zhu, Q. A comparative study on laser powder bed fusion of IN718 powders produced by gas atomization and plasma rotating electrode process. Mater. Sci. Eng. A 2022, 850, 143589. [Google Scholar] [CrossRef]
- Liu, T.; Leazer, J.D.; Menon, S.K.; Brewer, L.N. Microstructural analysis of gas atomized Al-Cu alloy feedstock powders for cold spray deposition. Surf. Coat. Technol. 2018, 350, 621–632. [Google Scholar] [CrossRef]
- Schwenck, D.; Ellendt, N.; Fischer-Bühner, J.; Hofmann, P.; Uhlenwinkel, V. A novel convergent–divergent annular nozzle design for close-coupled atomisation. Powder Metall. 2017, 60, 198–207. [Google Scholar] [CrossRef]
- Mullis, A.M.; Farrell, L.; Cochrane, R.F.; Adkins, N.J. Estimation of Cooling Rates During Close-Coupled Gas Atomization Using Secondary Dendrite Arm Spacing Measurement. Met. Mater. Trans. B 2013, 44, 992–999. [Google Scholar] [CrossRef]
- Ciftci, N.; Ellendt, N.; Coulthard, G.; Soares Barreto, E.; Mädler, L.; Uhlenwinkel, V. Novel Cooling Rate Correlations in Molten Metal Gas Atomization. Met. Mater. Trans. B 2019, 50, 666–677. [Google Scholar] [CrossRef]
- Soares Barreto, E.; Frey, M.; Wegner, J.; Jose, A.; Neuber, N.; Busch, R.; Kleszczynski, S.; Mädler, L.; Uhlenwinkel, V. Properties of gas-atomized Cu-Ti-based metallic glass powders for additive manufacturing. Mater. Des. 2022, 215, 110519. [Google Scholar] [CrossRef]
- Mani, C.; Karthikeyan, R.; Kannan, S. Electrochemical Impedance Analysis on Cryogenically Treated Dissimilar Metal Welding of 316L Stainless Steel and Monel 400 Alloy Using GTAW. Metals 2019, 9, 1088. [Google Scholar] [CrossRef]
- Kostryzhev, A.G.; Marenych, O.O.; Pan, Z.; Li, H.; van Duin, S. Strengthening mechanisms in Monel K500 alloyed with Al and Ti. J. Mater. Sci. 2023, 58, 4150–4164. [Google Scholar] [CrossRef]
- Tian, Y.T.; Li, Y.; Xia, L.; Man, T.H. Research on New Technology of Metal Powder-Plate Composite Rolling. Int. Conf. Adv. Mater. Eng. Mater. 2020, 861, 41–45. [Google Scholar] [CrossRef]
- Wei, P.; Chen, Z.; Zhang, S.; Li, B.; Han, J.; Lu, B. Microstructure and mechanical properties of graphene and nano-zirconia reinforced AlSi10Mg composite fabricated by laser powder bed fusion. Mater. Sci. Eng. A 2023, 864, 144574. [Google Scholar] [CrossRef]
- Doñate-Buendia, C.; Kürnsteiner, P.; Stern, F.; Wilms, M.B.; Streubel, R.; Kusoglu, I.M.; Tenkamp, J.; Bruder, E.; Pirch, N.; Barcikowski, S.; et al. Microstructure formation and mechanical properties of ODS steels built by laser additive manufacturing of nanoparticle coated iron-chromium powders. Acta Mater. 2021, 206, 116566. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, D.L. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng. A 2008, 483–484, 148–152. [Google Scholar] [CrossRef]
- Kang, Y.; Han, Q.; Zhao, X.; Cai, M. Influence of nanoparticle reinforcements on the strengthening mechanisms of an ultrafine-grained dual phase steel containing titanium. Mater. Des. 2013, 44, 331–339. [Google Scholar] [CrossRef]
- Zou, L.; Yang, C.; Lei, Y.; Zakharov, D.; Wiezorek, J.M.K.; Su, D.; Yin, Q.; Li, J.; Liu, Z.; Stach, E.A.; et al. Dislocation nucleation facilitated by atomic segregation. Nat. Mater. 2018, 17, 56–63. [Google Scholar] [CrossRef]
- Marenych, O.O.; Ding, D.; Pan, Z.; Kostryzhev, A.G.; Li, H.; van Duin, S. Effect of chemical composition on microstructure, strength and wear resistance of wire deposited Ni-Cu alloys. Addit. Manuf. 2018, 24, 30–36. [Google Scholar] [CrossRef]
- Kannan, A.R.; Kumar, S.M.; Pramod, R.; Shanmugam, N.S.; Vishnukumar, M.; Channabasavanna, S.G. Microstructure and corrosion resistance of Ni-Cu alloy fabricated through wire arc additive manufacturing. Mater. Lett. 2022, 308, 131262. [Google Scholar] [CrossRef]
- Marenych, O.; Kostryzhev, A. Strengthening Mechanisms in Nickel-Copper Alloys: A Review. Metals 2020, 10, 1358. [Google Scholar] [CrossRef]
- Ting, J.; Peretti, M.W.; Eisen, W.B. The effect of wake-closure phenomenon on gas atomization performance. Mater. Sci. Eng. A 2002, 326, 110–121. [Google Scholar] [CrossRef]
- Vedovato, G.; Zambon, A.; Ramous, E. A simplified model for gas atomization. Mater. Sci. Eng. A 2001, 304–306, 235–239. [Google Scholar] [CrossRef]
- Tourret, D.; Reinhart, G.; Gandin, C.-A.; Iles, G.N.; Dahlborg, U.; Calvo-Dahlborg, M.; Bao, C.M. Gas atomization of Al–Ni powders: Solidification modeling and neutron diffraction analysis. Acta Mater. 2011, 59, 6658–6669. [Google Scholar] [CrossRef]
- Ertay, D.S.; Ma, H.; Vlasea, M. Correlative Beam Path and Pore Defect Space Analysis for Modulated Powder Bed Laser Fusion Process; Solid Freeform Fabrication Symposium, University of Texas at Austin: Austin, TX, USA, 2018. [Google Scholar]
- Ulbricht, A.; Mohr, G.; Altenburg, S.J.; Oster, S.; Maierhofer, C.; Bruno, G. Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study. Metals 2021, 11, 1012. [Google Scholar] [CrossRef]
- Hojjatzadeh, S.M.H.; Parab, N.D.; Guo, Q.; Qu, M.; Xiong, L.; Zhao, C.; Escano, L.I.; Fezzaa, K.; Everhart, W.; Sun, T.; et al. Direct observation of pore formation mechanisms during LPBF additive manufacturing process and high energy density laser welding. Int. J. Mach. Tools Manuf. 2020, 153, 103555. [Google Scholar] [CrossRef]
- Kan, W.H.; Chiu, L.N.S.; Lim, C.V.S.; Zhu, Y.; Tian, Y.; Jiang, D.; Huang, A. A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion. J. Mater. Sci. 2022, 57, 9818–9865. [Google Scholar] [CrossRef]
- Kan, W.H.; Gao, M.; Zhang, X.; Liang, E.; Chiu, N.S.L.; Lim, C.V.S.; Huang, A. The influence of porosity on Ti-6Al-4V parts fabricated by laser powder bed fusion in the pursuit of process efficiency. Int. J. Adv. Manuf. Technol. 2022, 119, 5417–5438. [Google Scholar] [CrossRef]
- Voisin, T.; Calta, N.P.; Khairallah, S.A.; Forien, J.-B.; Balogh, L.; Cunningham, R.W.; Rollett, A.D.; Wang, Y.M. Defects-dictated tensile properties of selective laser melted Ti-6Al-4V. Mater. Des. 2018, 158, 113–126. [Google Scholar] [CrossRef]
- Huang, Y.; Fleming, T.G.; Clark, S.J.; Marussi, S.; Fezzaa, K.; Thiyagalingam, J.; Leung, C.L.A.; Lee, P.D. Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing. Nat. Commun. 2022, 13, 1170. [Google Scholar] [CrossRef]
- Li, C.; White, R.; Fang, X.Y.; Weaver, M.; Guo, Y.B. Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment. Mater. Sci. Eng. A 2017, 705, 20–31. [Google Scholar] [CrossRef]
- Pilz, S.; Gustmann, T.; Günther, F.; Zimmermann, M.; Kühn, U.; Gebert, A. Controlling the Young’s modulus of a ß-type Ti-Nb alloy via strong texturing by LPBF. Mater. Des. 2022, 216, 110516. [Google Scholar] [CrossRef]
- Avateffazeli, M.; Carrion, P.E.; Shachi-Amirkhiz, B.; Pirgazi, H.; Mohammadi, M.; Shamsaei, N.; Haghshenas, M. Correlation between tensile properties, microstructure, and processing routes of an Al–Cu–Mg–Ag–TiB2 (A205) alloy: Additive manufacturing and casting. Mater. Sci. Eng. A 2022, 841, 142989. [Google Scholar] [CrossRef]
- Krakhmalev, P.; Fredriksson, G.; Svensson, K.; Yadroitsev, I.; Yadroitsava, I.; Thuvander, M.; Peng, R. Microstructure, Solidification Texture, and Thermal Stability of 316 L Stainless Steel Manufactured by Laser Powder Bed Fusion. Metals 2018, 8, 643. [Google Scholar] [CrossRef]
- Cordero, Z.C.; Knight, B.E.; Schuh, C.A. Six decades of the Hall–Petch effect—A survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 2016, 61, 495–512. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, T.; Gao, Z.; Feng, Y.; Li, C.; Guo, Q.; Ma, Z.; Liu, Y. Significant reduction of grain size and texture intensity in laser powder bed fusion fabricated nickel-based superalloy by increasing constitutional supercooling. Compos. Part B Eng. 2023, 266, 111040. [Google Scholar] [CrossRef]
- Muránsky, O.; Balogh, L.; Tran, M.; Hamelin, C.J.; Park, J.-S.; Daymond, M.R. On the measurement of dislocations and dislocation substructures using EBSD and HRSD techniques. Acta Mater. 2019, 175, 297–313. [Google Scholar] [CrossRef]
- Smith, J.; Xiong, W.; Yan, W.; Lin, S.; Cheng, P.; Kafka, O.L.; Wagner, G.J.; Cao, J.; Liu, W.K. Linking process, structure, property, and performance for metal-based additive manufacturing: Computational approaches with experimental support. Comput. Mech. 2016, 57, 583–610. [Google Scholar] [CrossRef]
- Zhang, X.X.; Andrä, H.; Harjo, S.; Gong, W.; Kawasaki, T.; Lutz, A.; Lahres, M. Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation. Mater. Des. 2021, 198, 109339. [Google Scholar] [CrossRef]
- Voisin, T.; Forien, J.-B.; Perron, A.; Aubry, S.; Bertin, N.; Samanta, A.; Baker, A.; Wang, Y.M. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion. Acta Mater. 2021, 203, 116476. [Google Scholar] [CrossRef]
- Kong, D.; Dong, C.; Wei, S.; Ni, X.; Zhang, L.; Li, R.; Wang, L.; Man, C.; Li, X. About metastable cellular structure in additively manufactured austenitic stainless steels. Addit. Manuf. 2021, 38, 101804. [Google Scholar] [CrossRef]
- Bertsch, K.M.; Meric de Bellefon, G.; Kuehl, B.; Thoma, D.J. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L. Acta Mater. 2020, 199, 19–33. [Google Scholar] [CrossRef]
- Gao, C.; Wang, Z.; Xiao, Z.; You, D.; Wong, K.; Akbarzadeh, A.H. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties. J. Mater. Process. Technol. 2020, 281, 116618. [Google Scholar] [CrossRef]
- Jena, A.; Atabay, S.E.; Gontcharov, A.; Lowden, P.; Brochu, M. Laser powder bed fusion of a new high gamma prime Ni-based superalloy with improved weldability. Mater. Des. 2021, 208, 109895. [Google Scholar] [CrossRef]
- Huang, Z.; Zhai, Z.; Lin, W.; Chang, H.; Wu, Y.; Yang, R.; Zhang, Z. On the orientation dependent microstructure and mechanical behavior of Hastelloy X superalloy fabricated by laser powder bed fusion. Mater. Sci. Eng. A 2022, 844, 143208. [Google Scholar] [CrossRef]
- Qin, H.; Dong, Q.; Fallah, V.; Daymond, M.R. Rapid Solidification and Non-equilibrium Phase Constitution in Laser Powder Bed Fusion (LPBF) of AlSi10Mg Alloy: Analysis of Nano-precipitates, Eutectic Phases, and Hardness Evolution. Met. Mater. Trans. A 2020, 51, 448–466. [Google Scholar] [CrossRef]
- Li, J.; Cheng, T.; Liu, Y.; Yang, Y.; Li, W.; Wei, Q. Simultaneously enhanced strength and ductility of Cu-15Ni-8Sn alloy with periodic heterogeneous microstructures fabricated by laser powder bed fusion. Addit. Manuf. 2022, 54, 102726. [Google Scholar] [CrossRef]
- Song, Z.; Gao, S.; Wang, Z.; Lan, L.; Hou, J.; He, B. Effects of non-equilibrium microstructures on microstructure evolution and mechanical properties of laser powder bed fusion IN625 Ni-based superalloy during long-term thermal exposure at 700 °C and 750 °C. Mater. Sci. Eng. A 2022, 856, 143883. [Google Scholar] [CrossRef]
- Jodi, D.E.; Kitashima, T.; Singh, A.; Watanabe, M. High-temperature microstructural stability of pure Ni fabricated by laser powder bed fusion using Gaussian and flat-top beam profiles. Mater. Charact. 2023, 200, 112897. [Google Scholar] [CrossRef]
- Bassini, E.; Sivo, A.; Martelli, P.A.; Rajczak, E.; Marchese, G.; Calignano, F.; Biamino, S.; Ugues, D. Effects of the solution and first aging treatment applied to as-built and post-HIP CM247 produced via laser powder bed fusion (LPBF). J. Alloys Compd. 2022, 905, 164213. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Sawada, K.; Suzuki, M.; Watanabe, M. Microstructure development of modified 9Cr-1Mo steel during laser powder bed fusion and heat treatment. Addit. Manuf. 2023, 61, 103350. [Google Scholar] [CrossRef]
- Jiang, R.; Mostafaei, A.; Wu, Z.; Choi, A.; Guan, P.-W.; Chmielus, M.; Rollett, A.D. Effect of heat treatment on microstructural evolution and hardness homogeneity in laser powder bed fusion of alloy 718. Addit. Manuf. 2020, 35, 101282. [Google Scholar] [CrossRef]
- Okugawa, M.; Saito, K.; Yoshima, H.; Sawaizumi, K.; Nomoto, S.; Watanabe, M.; Nakano, T.; Koizumi, Y. Solute segregation in a rapidly solidified Hastelloy-X Ni-based superalloy during laser powder bed fusion investigated by phase-field and computational thermal-fluid dynamics simulations. Addit. Manuf. 2024, 84, 104079. [Google Scholar] [CrossRef]
- Seede, R.; Zhang, B.; Whitt, A.; Picak, S.; Gibbons, S.; Flater, P.; Elwany, A.; Arroyave, R.; Karaman, I. Effect of heat treatments on the microstructure and mechanical properties of an ultra-high strength martensitic steel fabricated via laser powder bed fusion additive manufacturing. Addit. Manuf. 2021, 47, 102255. [Google Scholar] [CrossRef]
- Gu, D.; Zhang, H.; Dai, D.; Xia, M.; Hong, C.; Poprawe, R. Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance. Compos. Part B Eng. 2019, 163, 585–597. [Google Scholar] [CrossRef]
- Marenych, O.O.; Kostryzhev, A.G.; Pan, Z.; Li, H.; van Duin, S. Comparative effect of Mn/Ti solute atoms and TiC/Ni3(Al,Ti) nano-particles on work hardening behaviour in Ni Cu alloys fabricated by wire arc additive manufacturing. Mater. Sci. Eng. A 2019, 753, 262–275. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Urkude, D.K.; Mukhopadhyay, G. Effect of Cold Work on Hydrogen Embrittlement of Monel-400. J. Fail. Anal. Preven. 2024, 24, 279–290. [Google Scholar] [CrossRef]
- Janardhan, G.; Kishore, K.; Dutta, K.; Mukhopadhyay, G. Tensile and fatigue behavior of resistance spot-welded HSLA steel sheets: Effect of pre-strain in association with dislocation density. Mater. Sci. Eng. A 2020, 793, 139796. [Google Scholar] [CrossRef]
- Jeong, W.C. Effect of prestrain on aging and bake hardening of cold-rolled, continuously annealed steel sheets. Met. Mater. Trans. A 1998, 29, 463–467. [Google Scholar] [CrossRef]
- Smith, B.A.; Laursen, C.M.; Bartanus, J.; Carroll, J.D.; Pataky, G.J. The Interplay of Geometric Defects and Porosity on the Mechanical Behavior of Additively Manufactured Components. Exp. Mech. 2021, 61, 685–698. [Google Scholar] [CrossRef]
- Yin, D.; Liu, H.; Chen, Y.; Yi, D.; Wang, B.; Wang, B.; Shen, F.; Fu, S.; Tang, C.; Pan, S. Effect of grain size on fatigue-crack growth in 2524 aluminium alloy. Int. J. Fatigue 2016, 84, 9–16. [Google Scholar] [CrossRef]
- Boissonnet, G.; Boulesteix, C.; Bonnet, G.; Balmain, J.; Pedraza, F. Thermal Transport Properties of New Coatings on Steels for Supercritical Steam Power Plants. Oxid. Met. 2017, 88, 191–202. [Google Scholar] [CrossRef]
- Boissonnet, G.; Bonnet, G.; Pasquet, A.; Bourhila, N.; Pedraza, F. Evolution of thermal insulation of plasma-sprayed thermal barrier coating systems with exposure to high temperature. J. Eur. Ceram. Soc. 2019, 39, 2111–2121. [Google Scholar] [CrossRef]
- Boissonnet, G.; Bonnet, G.; Pedraza, F. Thermo-Physical Properties of HR3C and P92 Steels at High-Temperature. J. Mater. Appl. 2019, 8, 59–64. [Google Scholar] [CrossRef]
In Situ Nitridation [9] | Pre-FBR Ex Situ Nitridation [This Work, Section 3.1 and Section 3.3] | Post-FBR Ex Situ Nitridation [This Work, Section 3.2, Section 3.3 and Section 3.4] | |
---|---|---|---|
Atomization type | GARS (nitrogen) CCA | Shielding gas (argon) CCA | - |
Post-treatment | - | - | FBR (nitrogen) |
Targeted NPs in powder | TiN | None | TiN |
Targeted NPs in LPBF part | TiN | None | TiN |
In Situ Nitridation [9] | Pre-FBR Ex Situ Nitridation [This Work, Section 3.1 and Section 3.3] | Post-FBR Ex Situ Nitridation [This Work, Section 3.2, Section 3.3 and Section 3.4] | |
---|---|---|---|
Atomization type | GARS (nitrogen) CCA | Shielding gas (argon) CCA | - |
Post treatment | - | - | FBR (nitrogen) |
Targeted NP in powder | TiN | None | TiN |
Detected NP in powder | TiN | TiN | TiN |
Appearance form | Monomodal | Monomodal | Bimodal |
Powder-TiN-NP diameter in [nm] | Fine: - Coarse: ~50–100 | Fine: - Coarse: ~50–100 | Fine: ~10 Coarse: ~50–100 |
NP share in powder in [%] | Surface: 0.12 Inside: 0.13 | Surface: 0.96 Inside: 0.22 | Surface: 1.80 Inside: 0.88 |
Bulk density in [g/cm3] | 4.62 | 4.3 | 4.7 |
Flowability in [s/50 g] | 14.0 | 14.5 | 15.2 |
Particle size distribution in [d10/d50/d90; µm] | 17.3/30.7/51.5 | 21.3/37.9/58.1 | 20.2/38.8/59.8 |
Targeted NP in LPBF part | TiN | None | TiN |
Detected NP in LPBF part | TiN, Al2O3 | TiN, Al2O3 | TiN, Al2O3 |
Appearance form | Monomodal | Monomodal | Bimodal |
Part-TiN-NP diameter in [nm] | Fine: - Coarse: ~50–100 | Fine: - Coarse: ~50–100 | Fine: ~10 Coarse: ~50–100 |
NP share in part in [%] | 3.88 | 0.12 | 6.53 |
Mean grain diameter in [µm] | 6.78 | 5.20 | 7.44 |
GND density in [1014/m2] | 3.58 | 4.73 | 4.86 |
Hardness in [HV10] | 207.4 | 178.8 | 202.0 |
Tensile properties | Enhanced σ and ε to unmodified material | - | Enhanced σ and ε to in situ version |
Creep properties | Longer tR to unmodified material | - | Longer tR to in situ version |
Fatigue properties | Higher Nf to unmodified material | - | Higher Nf to in situ version |
Thermal diffusivity | ≙ ex situ | - | ≙ in situ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roth, J.-P.; Šulák, I.; Gálíková, M.; Duval, A.; Boissonnet, G.; Pedraza, F.; Krupp, U.; Jahns, K. The Dispersion-Strengthening Effect of TiN Nanoparticles Evoked by Ex Situ Nitridation of Gas-Atomized, NiCu-Based Alloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion. J. Manuf. Mater. Process. 2024, 8, 223. https://doi.org/10.3390/jmmp8050223
Roth J-P, Šulák I, Gálíková M, Duval A, Boissonnet G, Pedraza F, Krupp U, Jahns K. The Dispersion-Strengthening Effect of TiN Nanoparticles Evoked by Ex Situ Nitridation of Gas-Atomized, NiCu-Based Alloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion. Journal of Manufacturing and Materials Processing. 2024; 8(5):223. https://doi.org/10.3390/jmmp8050223
Chicago/Turabian StyleRoth, Jan-Philipp, Ivo Šulák, Markéta Gálíková, Antoine Duval, Germain Boissonnet, Fernando Pedraza, Ulrich Krupp, and Katrin Jahns. 2024. "The Dispersion-Strengthening Effect of TiN Nanoparticles Evoked by Ex Situ Nitridation of Gas-Atomized, NiCu-Based Alloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion" Journal of Manufacturing and Materials Processing 8, no. 5: 223. https://doi.org/10.3390/jmmp8050223
APA StyleRoth, J. -P., Šulák, I., Gálíková, M., Duval, A., Boissonnet, G., Pedraza, F., Krupp, U., & Jahns, K. (2024). The Dispersion-Strengthening Effect of TiN Nanoparticles Evoked by Ex Situ Nitridation of Gas-Atomized, NiCu-Based Alloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion. Journal of Manufacturing and Materials Processing, 8(5), 223. https://doi.org/10.3390/jmmp8050223