On Forming Characteristics of Hems by Means of Incremental Sheet Forming
Abstract
:1. Introduction
1.1. Hemming and Roller Hemming
1.2. Hemming by Incremental Sheet Forming
2. Materials and Methods
2.1. Material
2.2. Tools
2.3. Hem Geometries
2.4. Experimental Setup and Tool Paths
2.5. 3D Scanning
2.6. Optical Forming Analysis
2.7. Finite Element Analysis (FEA)
3. Results
3.1. Validation of ISF Hemming of Curved Hems
3.2. Material Flow in ISF Hemming of Curved Hems
3.3. Comparison of ISF Hemming and Roller Hemming
4. Conclusions
- The numerical models in general show a good agreement with the experiments and are able to predict the geometry, thinning behavior, and strain distribution. This makes it a valuable tool for further investigations. Optimization regarding precision, calculation time, and representation of surface effects remain to be further improved.
- In hemming of curved edge parts, strain distributions and material flow vectors contributed to the finding of beneficial material flow. It was shown that ISF hemming allows for greater material flow in thickness direction () to reach higher strains before cracking/wrinkling of the hem. Additionally, it facilitates compensation of critical strains by material flow in radial direction ().
- Investigation of straight hems and comparison with the roller hemming showed that ISF hemming induces strain across the whole hem area, which also reaches higher values than in roller hemming. Both properties can be advantageous for manufacturing complex hems (e.g., with multiple curvature changes) and small radii, as well as corners. Also, rather long flange lengths (e.g., 35 mm) can be formed without significant limitations, as demonstrated. Therefore, the field of application in joining by forming can be extended with ISF hemming.
- One reason for the differences in the forming characteristic of ISF hemming compared to roller hemming was found in the deformation zone and thus deformation mechanism. It was pointed out that conventional roller hemming comes close to bending; therefore, the predominant deformation in the shell midplane is compression of the hemming radius. Contrary to this, ISF hemming tends to draw the hem, creating tensile load on the hemming radius.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Böllinghaus, T.; Byrne, G.; Cherpakov, B.; Chlebus, E.; Cross, C.E.; Denkena, B.; Dilthey, U.; Hatsuzawa, T.; Herfurth, K.; Herold, H.; et al. Manufacturing Engineering. In Springer Handbook of Mechanical Engineering, 1st ed.; Grote, K.H., Antonsson, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 523–785. [Google Scholar] [CrossRef]
- Kästle, C.; Liewald, M.; Roll, K. Springback Simulation of the Process Chain Press Line Forming and Roller Hemming Processes. KEM 2013, 549, 231–238. [Google Scholar] [CrossRef]
- Kim, H.; Chatti, S.; Kardes, N. Processes and Applications. In Sheet Metal Forming; Altan, T., Tekkaya, A.E., Eds.; ASM international: Tokyo, Japan, 2012; pp. 19–49. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Li, M.; Zhu, W. Numerical Simulation Method of Roller Hemming on Variable Curvature Aluminium Alloy Sheet with Adhesive. AMMCS 2021, 20, 399–406. [Google Scholar] [CrossRef]
- Drossel, W.G.; Pfeifer, M.; Findeisen, M.; Rössinger, M.; Eckert, A.; Barth, D. The influence of the robot’s stiffness on roller hemming processes. In Proceedings of the ISR/Robotik 2014; 41st International Symposium on Robotics, Munich, Germany, 2–3 June 2014; pp. 531–538. [Google Scholar]
- Burchitz, I.; Fritsche, D.; Grundmann, G.; Hillmann, M. Efficient planning and numerical analysis of industrial hemming processes. AIP Conf. Proc. 2011, 1383, 243–250. [Google Scholar] [CrossRef]
- Le Maoût, N.; Manach, P.Y.; Thuillier, S. Influence of prestrain on the numerical simulation of the roller hemming process. J. Mater. Process. Technol. 2012, 212, 450–457. [Google Scholar] [CrossRef]
- Ceretti, E.; Attanasio, A.; Fiorentino, A.; Giardini, C. Sheet Hemming with Rolling Tools: Analysis and Optimization of the Part Quality. KEM 2007, 344, 357–364. [Google Scholar] [CrossRef]
- Livatyali, H.; Laxhuber, T.; Altan, T. Experimental investigation of forming defects in flat surface–convex edge hemming. J. Mater. Process. Technol. 2004, 146, 20–27. [Google Scholar] [CrossRef]
- Gürgen, S. A parametric investigation of roller hemming operation on a curved edge part. ACME 2019, 19, 11–19. [Google Scholar] [CrossRef]
- Zubeil, M.; Roll, K.; Merklein, M. Untersuchung der Gefügeentwicklung beim Rollfalzen. In Proceedings of the 17. Sächsische Fachtagung Umformtechnik SFU, Freiberg, Germany, 24–26 November 2010; pp. 149–161. [Google Scholar]
- Abe, Y.; Ijichi, W.; Mori, K.-i.; Nakagawa, K. Hemming with Pre-Bent Inner Sheet for Joining Ultra-High Strength Steel Sheets of Automobile Parts. J. Manuf. Mater. Process. 2020, 4, 77. [Google Scholar] [CrossRef]
- Li, J.; Zhu, W.; Wang, S. Numerical Quantification Model and Experiment of External Force on Roller Hemming of Curved Edge Aluminium Alloy with Adhesive. Chin. J. Mech. Eng. 2022, 35, 17. [Google Scholar] [CrossRef]
- Peter, I.; Fracchia, E.; Canale, I.; Maiorano, R. Incremental Sheet Forming for Prototyping Automotive Modules. Procedia Manuf. 2019, 32, 50–58. [Google Scholar] [CrossRef]
- Kajal, G.; Tyagi, M.R.; Kumar, G. A review on the effect of residual stresses in incremental sheet metal forming used in automotive and medical sectors. Mater. Today Proc. 2023, 78, 524–534. [Google Scholar] [CrossRef]
- Seiter, A.; Pofahl, T.; Trautz, M.; Reitmaier, L.M.; Hirt, G. Design and Analysis of Freeform Shell Structures Composed of Doubly Curved Sheet Metal Panels. In Proceedings of the IASS Annual Symposium 2019—Structural Membranes 2019, Barcelona, Spain, 7–10 October 2019. [Google Scholar]
- Seyyedi, S.E.; Gorji, H.; Bakhshi-Jooybari, M.; Mirnia, M.J. Comparison between conventional press-working and incremental forming in hole-flanging of AA6061-T6 sheets using a ductile fracture model. Int. J. Solids Struct. 2023, 270, 112225. [Google Scholar] [CrossRef]
- Hussain, G.; Hassan, M.; Wei, H.; Buhl, J.; Xiao, M.; Iqbal, A.; Qayyum, H.; Riaz, A.A.; Muhammad, R.; Ostrikov, K. Advances on Incremental forming of composite materials. Alex. Eng. J. 2023, 79, 308–336. [Google Scholar] [CrossRef]
- Brecher, C.; Özdemir, D.; Weber, A.R. Integrative production technology—Theory and applications. In Integrative Production Technology; Springer: Cham, Switzerland, 2017; pp. 1–17. [Google Scholar]
- Steinfels, D.; Reitmaier, L.M.; Bailly, D.B. Preliminary experimental investigation on hemming of curved edge parts by means of incremental sheet forming. Int. J. Adv. Manuf. Technol. 2024, 133, 4879–4891. [Google Scholar] [CrossRef]
- Jackson, K.; Allwood, J. The mechanics of incremental sheet forming. J. Mater. Process. Technol. 2009, 209, 1158–1174. [Google Scholar] [CrossRef]
- Hussain, G.; Valaei, H.; Al-Ghamdi, K.A.; Khan, B. Finite element and experimental analyses of cylindrical hole flanging in incremental forming. Trans. Nonferrous Met. Soc. China 2016, 26, 2419–2425. [Google Scholar] [CrossRef]
- Borrego, M.; Morales-Palma, D.; López-Fernández, J.A.; Martínez-Donaire, A.J.; Centeno, G.; Vallellano, C. Hole-flanging of AA7075-O sheets: Conventional process versus SPIF. Procedia Manuf. 2020, 50, 236–240. [Google Scholar] [CrossRef]
- Mezher, M.T.; Khazaal, S.M.; Namer, N.S.; Shakir, R.A. A comparative analysis study of hole flanging by incremental sheet forming process of AA1060 and DC01 sheet metals. JESTEC 2021, 16, 4383–4403. [Google Scholar]
- Mulay, A.; Ben, B.S.; Ismail, S.; Kocanda, A.; Jasiński, C. Performance evaluation of high-speed incremental sheet forming technology for AA5754 H22 aluminum and DC04 steel sheets. Archiv. Civ. Mech. Eng 2018, 18, 1275–1287. [Google Scholar] [CrossRef]
- Mezher, M.T.; Barrak, O.S.; Nama, S.A.; Shakir, R.A. Predication of Forming Limit Diagram and Spring-back during SPIF process of AA1050 and DC04 Sheet Metals. JMERD 2021, 44, 337–345. [Google Scholar]
- Voswinckel, H.; Bambach, M.; Hirt, G. Process Limits of Stretch and Shrink Flanging by Incremental Sheet Metal Forming. KEM 2013, 549, 45–52. [Google Scholar] [CrossRef]
- Creaform HAndyScan700. Available online: https://www.creaform3d.com/en/customer-support/legacy-products/first-generation-handyscan-3d-zscanner-700 (accessed on 21 November 2024).
- ARGUS Optical Solution for Forming Analysis. Available online: https://www.zeiss.com/metrology/us/systems/optical-3d/3d-testing/argus.html (accessed on 21 November 2024).
- Le Maoût, N.; Thuillier, S.; Manach, P.Y. Drawing, flanging and hemming of metallic thin sheets: A multi-step process. Mater. Des. 2010, 31, 2725–2736. [Google Scholar] [CrossRef]
- Lenard, J.G. Numerical simulation of sheet metal forming. In Metal Forming Science and Practice: A State-of-the-Art Volume in Honour of Professor JA schey’s 80th Birthday, 1st ed.; Elsevier Science Ltd.: Oxford, UK, 2002. [Google Scholar]
Material: mild steel DC04 (1.0338/St14O3) | ||||
Mechanical Properties | ||||
Density ρ | Yield strength Rp0,2 | Tensile strength Rm | Elongation A80 | |
7.85 kg/dm2 | 140–210 N/mm2 | 270–350 N/mm | 38% | |
Chemical Composition (in weight%) | ||||
Element: | C | Mn | P | S |
Max: | 0.08 | 0.4 | 0.03 | 0.03 |
Geometry | rB (mm) | gF (mm) | α (°) | t (mm) | r0 (mm) | FL (mm) |
---|---|---|---|---|---|---|
Straight | 2 | 2 | 90 | 1 | - | 35 |
Stretch | 50 | 10 | ||||
Shrink |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinfels, D.; Bailly, D. On Forming Characteristics of Hems by Means of Incremental Sheet Forming. J. Manuf. Mater. Process. 2024, 8, 266. https://doi.org/10.3390/jmmp8060266
Steinfels D, Bailly D. On Forming Characteristics of Hems by Means of Incremental Sheet Forming. Journal of Manufacturing and Materials Processing. 2024; 8(6):266. https://doi.org/10.3390/jmmp8060266
Chicago/Turabian StyleSteinfels, Dennis, and David Bailly. 2024. "On Forming Characteristics of Hems by Means of Incremental Sheet Forming" Journal of Manufacturing and Materials Processing 8, no. 6: 266. https://doi.org/10.3390/jmmp8060266
APA StyleSteinfels, D., & Bailly, D. (2024). On Forming Characteristics of Hems by Means of Incremental Sheet Forming. Journal of Manufacturing and Materials Processing, 8(6), 266. https://doi.org/10.3390/jmmp8060266