Cerebrovascular Burden and Its Association with Ménière’s Disease: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Settings, and Participants
2.2. Instruments, Variables, and Data Collection
- Lacunar infarcts: Spherical or oval lesions >3 mm and <20 mm, located in basal ganglia, internal capsule, centrum semiovale, or brainstem, with specific MRI characteristics [20].
- White matter hyperintensities (WMH): Classified using the Fazekas scale (0–3) [21].
- Enlarged perivascular spaces (EPVS): Small (<3 mm) CSF-filled spaces, scored on a 0–4 scale for basal ganglia and centrum semiovale [22]. The values correspond to EPVS on a single hemisphere of the brain. In cases of asymmetry between hemispheres, EPVS were recorded in the slice with the maximum count, so that the higher score was accounted. EPVS total score for each patient was obtained by adding the scores from both regions (EPVS basal ganglia and EPVS semiovale), with a range of 0 to 8.
- Small-vessel disease (SVD) burden: Assessed using a modified 3-item SVD score (SVD-3), excluding cerebral microbleeds (CMBs) due to limited availability of gradient echo T2* sequences in our sample [23,24,25]. The SVD-3 score was calculated based on the presence of lacunes, EPVS, and WMH (Fazekas score) (Table 1). The SVD-3 scoring is as follows: 1 point for the presence of lacunes, indicated by the existence of ≥1 lacune(s); 1 point for the presence of EPVS grade 2–4 (moderate to severe), found either in the basal ganglia or semi-oval center; and 1 point for the presence of WMH defined by a Fazekas score ≥ 2. Additionally, for further exploring the statistical validity of results, three additional subscales of SVD-3 with lower cutoffs were created in order to check for differences in sensitivity of SVD burden scoring by lowering the cutoff for Fazekas (SVD-3 low-Fazekas), EPVS (SVD-3 low-EPVS) and both Fazekas and EPVS (SVD-3 low-Fazekas + low-EPVS) (Table 1).
- Cortical strokes: Larger infarcts involving cortical or subcortical tissue or large striatocapsular/subcortical lesions.
2.3. MRI Specifications
2.4. Statistical Methods
3. Results
3.1. Study Population
3.1.1. Cases (Ménière’s Disease)
3.1.2. Controls
3.2. Ménière’s Versus Controls
3.3. Cerebrovascular Burden and Ménière’s Risk: A Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MD | Ménière’s disease |
MRI | Magnetic resonance imaging |
SVD | Small-vessel disease |
WMH | White matter hyperintensities |
EPVS | Enlarged perivascular spaces |
CMBs | Cerebral microbleeds |
ORL | Otorhinolaryngology |
3D | Three-dimensional |
FLAIR | Fluid-attenuated inversion recovery |
DWI | Diffusion-weighted |
CT | Computed tomography |
EH | Endolymphatic hydrops |
OSA | Obstructive sleep apnea |
SVD-3 | 3-item small-vessel disease score |
SVD-3 low-Fazekas | SVD-3 with lower cutoff for Fazekas score |
SVD-3 low-EPVS | SVD-3 with lower cutoff for EPVS |
SVD-3 low-Fazekas + low-EPVS | SVD-3 with lower cutoffs for both Fazekas and EPVS |
CI | Confidence interval |
Li | Logit |
References
- Semaan, M.T.; Megerian, C.A. Ménière’s disease: A challenging and relentless disorder. Otolaryngol. Clin. N. Am. 2011, 44, 383–403. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, T.; Pyykkö, I.; Arroll, M.A.; Casselbrant, M.L.; Foster, C.A.; Manzoor, N.F.; Megerian, C.A.; Naganawa, S.; Young, Y.-H. Meniere’s disease. Nat. Rev. Dis. Prim. 2016, 2, 16028. [Google Scholar] [CrossRef]
- Bruderer, S.G.; Bodmer, D.; Stohler, N.A.; Jick, S.S.; Meier, C.R. Population-Based Study on the Epidemiology of Ménière’s Disease. Audiol. Neurotol. 2017, 22, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Sanchez, J.M.; Lopez-Escamez, J.A. Menière’s disease. Handb. Clin. Neurol. 2016, 137, 257–277. [Google Scholar] [CrossRef]
- Simo, H.; Yang, S.; Qu, W.; Preis, M.; Nazzal, M.; Baugh, R. Meniere’s disease: Importance of socioeconomic and environmental factors. Am. J. Otolaryngol. 2015, 36, 393–398. [Google Scholar] [CrossRef]
- Tyrrell, J.S.; Whinney, D.J.D.; Ukoumunne, O.C.; Fleming, L.E.; Osborne, N.J. Prevalence, associated factors, and comorbid conditions for Ménière’s disease. Ear Hear. 2014, 35, e162–e169. [Google Scholar] [CrossRef]
- Alexander, T.H.; Harris, J.P. Current epidemiology of Meniere’s syndrome. Otolaryngol. Clin. N. Am. 2010, 43, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.; Raposo, F.; Guerreiro, C.; Berhanu, D.; Eça, T.; Campos, J.; Luís, L. Magnetic resonance imaging and Ménière’s disease—Unavoidable alliance. Neuroradiology 2021, 63, 1749–1763. [Google Scholar] [CrossRef]
- Ito, T.; Kitahara, T.; Inui, H.; Miyasaka, T.; Kichikawa, K.; Ota, I.; Nario, K.; Matsumura, Y.; Yamanaka, T. Endolymphatic space size in patients with Meniere’s disease and healthy controls. Acta Otolaryngol. 2016, 136, 879–882. [Google Scholar] [CrossRef]
- LLopez-Escamez, J.A.; Carey, J.; Chung, W.-H.; Goebel, J.A.; Magnusson, M.; Mandalà, M.; Newman-Toker, D.E.; Strupp, M.; Suzuki, M.; Trabalzini, F.; et al. Diagnostic criteria for Menière’s disease. Consensus document of the Bárány Society, the Japan Society for Equilibrium Research, the European Academy of Otology and Neurotology (EAONO), the American Academy of Otolaryngology-Head and Neck Surgery (AAO-H). Acta Otorrinolaringol. Esp. 2016, 67, 1–7. [Google Scholar] [CrossRef]
- Attyé, A.; Eliezer, M.; Boudiaf, N.; Tropres, I.; Chechin, D.; Schmerber, S.; Dumas, G.; Krainik, A. MRI of endolymphatic hydrops in patients with Meniere’s disease: A case-controlled study with a simplified classification based on saccular morphology. Eur. Radiol. 2017, 27, 3138–3146. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.A.; Breeze, R.E. The Meniere attack: An ischemia/reperfusion disorder of inner ear sensory tissues. Med. Hypotheses 2013, 81, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.A. Optimal management of Ménière’s disease. Ther. Clin. Risk Manag. 2015, 11, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Teggi, R.; Colombo, B.; Trimarchi, M.; Bianco, M.; Manfredi, A.; Bussi, M.; Corti, A. Altered Chromogranin A Circulating Levels in Meniere’s Disease. Dis. Markers 2015, 2015, 643420. [Google Scholar] [CrossRef]
- Rego, Â.R.; Dias, D.; Pinto, A.; e Castro, S.S.; Feliciano, T.; e Sousa, C.A. The cardiovascular aspects of a Ménière’s disease population—A pilot study. J. Otol. 2019, 14, 51–56. [Google Scholar] [CrossRef]
- Kim, S.Y.; Chung, J.; Yoo, D.M.; Kwon, M.J.; Kim, J.H.; Kim, J.-H.; Kim, H.; Choi, H.G. Smoking Is Positively Related and Alcohol Consumption Is Negatively Related to an Increased Risk of Meniere’s Disease. J. Clin. Med. 2022, 11, 5007. [Google Scholar] [CrossRef]
- Gibson, W.P.R. Revisiting the Cause of the Attacks of Vertigo During Meniere’s Disease. Ann. Otolaryngol. Rhinol. 2017, 4, 4–5. [Google Scholar]
- Ishii, M.; Ishiyama, G.; Ishiyama, A.; Kato, Y.; Mochizuki, F.; Ito, Y. Relationship Between the Onset of Ménière’s Disease and Sympathetic Hyperactivity. Front. Neurol. 2022, 13, 804777. [Google Scholar] [CrossRef]
- de Sousa, F.A.; Tarrio, J.; Rodrigues, R.; Alves, C.S.; Santos, M.; Pinto, A.N.; Meireles, L.; Rego, R. Cardiovascular Risk Profile in Ménière’s Disease and Posterior Circulation Infarction: A Comparative Study. J. Otorhinolaryngol. Hear. Balanc. Med. 2024, 5, 10. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013, 12, 822–838. [Google Scholar] [CrossRef]
- Fazekas, F.; Chawluk, J.B.; Alavi, A.; Hurtig, H.I.; Zimmerman, R.A. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am. J. Roentgenol. 1987, 149, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Doubal, F.N.; MacLullich, A.M.J.; Ferguson, K.J.; Dennis, M.S.; Wardlaw, J.M. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 2010, 41, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Klarenbeek, P.; van Oostenbrugge, R.J.; Rouhl, R.P.W.; Knottnerus, I.L.H.; Staals, J. Ambulatory blood pressure in patients with lacunar stroke: Association with total MRI burden of cerebral small vessel disease. Stroke 2013, 44, 2995–2999. [Google Scholar] [CrossRef]
- Staals, J.; Makin, S.D.J.; Doubal, F.N.; Dennis, M.S.; Wardlaw, J.M. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology 2014, 83, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Suzuyama, K.; Yakushiji, Y.; Ogata, A.; Nishihara, M.; Eriguchi, M.; Kawaguchi, A.; Noguchi, T.; Nakajima, J.; Hara, H. Total small vessel disease score and cerebro-cardiovascular events in healthy adults: The Kashima scan study. Int. J. Stroke 2020, 15, 973–979. [Google Scholar] [CrossRef]
- Oberman, B.S.; Patel, V.A.; Cureoglu, S.; Isildak, H. The aetiopathologies of Ménière’s disease: A contemporary review. Acta Otorhinolaryngol. Ital. 2017, 37, 250–263. [Google Scholar] [CrossRef]
- Teggi, R.; Meli, A.; Trimarchi, M.; LiraLuce, F.; Bussi, M. Does Ménière’s Disease in the Elderly Present Some Peculiar Features? J. Aging Res. 2012, 2012, 421596. [Google Scholar] [CrossRef]
- González-Marrero, I.; Castañeyra-Ruiz, L.; González-Toledo, J.M.; Castañeyra-Ruiz, A.; de Paz-Carmona, H.; Castro, R.; Hernandez-Fernaud, J.R.; Castañeyra-Perdomo, A.; Carmona-Calero, E.M. High Blood Pressure Effects on the Blood to Cerebrospinal Fluid Barrier and Cerebrospinal Fluid Protein Composition: A Two-Dimensional Electrophoresis Study in Spontaneously Hypertensive Rats. Int. J. Hypertens. 2013, 2013, 164653. [Google Scholar] [CrossRef]
- Takemori, K.; Murakami, T.; Kometani, T.; Ito, H. Possible involvement of oxidative stress as a causative factor in blood–brain barrier dysfunction in stroke-prone spontaneously hypertensive rats. Microvasc. Res. 2013, 90, 169–172. [Google Scholar] [CrossRef]
- Lin, C.Y.; Young, Y.H. Effect of smoking on the treatment of vertigo. Otol. Neurotol. 2001, 22, 369–372. [Google Scholar] [CrossRef]
- Molnár, A.; Stefani, M.; Tamás, L.; Szirmai, Á. Possible effect of diabetes and hypertension on the quality of life of patients suffering from Ménière’s disease. Orvosi Hetil. 2019, 160, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Pieskä, T.; Kotimäki, J.; Männikkö, M.; Sorri, M.; Hietikko, E. Concomitant diseases and their effect on disease prognosis in Meniere’s disease: Diabetes mellitus identified as a negative prognostic factor. Acta Otolaryngol. 2018, 138, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Scuto, M.; Di Mauro, P.; Ontario, M.L.; Amato, C.; Modafferi, S.; Ciavardelli, D.; Salinaro, A.T.; Maiolino, L.; Calabrese, V. Nutritional Mushroom Treatment in Meniere’s Disease with Coriolus versicolor: A Rationale for Therapeutic Intervention in Neuroinflammation and Antineurodegeneration. Int. J. Mol. Sci. 2020, 21, 284. [Google Scholar] [CrossRef] [PubMed]
- Akagi, N.; Takumida, M.; Anniko, M. Effect of inner ear blood flow changes on the endolymphatic sac. Acta Otolaryngol. 2008, 128, 1187–1195. [Google Scholar] [CrossRef]
- Horton, W.B.; Barrett, E.J. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr. Rev. 2021, 42, 29–55. [Google Scholar] [CrossRef] [PubMed]
- Wada, M.; Takeshima, T.; Nakamura, Y.; Nagasaka, S.; Kamesaki, T.; Kajii, E. Carotid plaque is a new risk factor for peripheral vestibular disorder: A retrospective cohort study. Medicine 2016, 95, e4510. [Google Scholar] [CrossRef]
- Friis, M.; Sørensen, M.S.; Qvortrup, K. The vein of the vestibular aqueduct with potential pathologic perspectives. Otol. Neurotol. 2008, 29, 73–78. [Google Scholar] [CrossRef]
- Filipo, R.; Ciciarello, F.; Attanasio, G.; Mancini, P.; Covelli, E.; Agati, L.; Fedele, F.; Viccaro, M. Chronic cerebrospinal venous insufficiency in patients with Ménière’s disease. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 77–82. [Google Scholar] [CrossRef]
- Attanasio, G.; Califano, L.; Bruno, A.; Giugliano, V.; Ralli, M.; Martellucci, S.; Milella, C.; de Vincentiis, M.; Russo, F.Y.; Greco, A. Chronic cerebrospinal venous insufficiency and menière’s disease: Interventional versus medical therapy. Laryngoscope 2020, 130, 2040–2046. [Google Scholar] [CrossRef]
- Bruno, A.; Napolitano, M.; Califano, L.; Attanasio, G.; Giugliano, V.; Cavazzuti, P.P.; Viccaro, M.; Masci, E.; Mastrangelo, D.; Salafia, F.; et al. The Prevalence of Chronic Cerebrospinal Venous Insufficiency in Meniere Disease: 24-Month Follow-up after Angioplasty. J. Vasc. Interv. Radiol. 2017, 28, 388–391. [Google Scholar] [CrossRef]
- Monzani, D.; Barillari, M.; Ciufelli, M.A.; Cavazza, E.A.; Neri, V.; Presutti, L.; Genovese, E. Effect of a fixed combination of nimodipine and betahistine versus betahistine as monotherapy in the long-term treatment of Ménière’s disease: A 10-year experience. Acta Otorhinolaryngol. Ital. 2012, 32, 393–403. [Google Scholar] [PubMed]
- Nukovic, J.J.; Opancina, V.; Ciceri, E.; Muto, M.; Zdravkovic, N.; Altin, A.; Altaysoy, P.; Kastelic, R.; Velazquez Mendivil, D.M.; Nukovic, J.A.; et al. Neuroimaging Modalities Used for Ischemic Stroke Diagnosis and Monitoring. Medicina 2023, 59, 1908. [Google Scholar] [CrossRef] [PubMed]
Type of Cerebrovascular Disease | MRI Feature | Scoring | Assessment | MRI Example |
---|---|---|---|---|
Small-vessel disease (SVD) [SVD-3 score] | Lacunes (International definition) [20] | SVD-3 | ≥1 scores 1 in SVD-3 | |
SVD-3 low-Fazekas | ||||
SVD-3 low-EPVS | ||||
SVD-3 low Fazakas + low-EPVS | Right basal-ganglia lacunes | |||
Enlarged perivascular spaces (semiquantitative scale) [22] | SVD-3 | Moderate to severe (more than 10 EPVS in worst side) score 1 in SVD-3 | ||
SVD-3 low-Fazekas | ||||
SVD-3 low-EPVS | Mild (more than 1 EPVS in worst side) score 1 in SVD-3 low-EPVS | |||
SVD-3 low Fazakas + low-EPVS | Right basal ganglia EPVS | |||
White matter hyperintensities (WMH) (Fazakas scale) [21] | SVD-3 | Fazekas ≥ 2 scores 1 in SVD-3 | ||
SVD-3 low-Fazekas | ||||
SVD-3 low-EPVS | Fazekas ≥ 1 scores 1 in SVD-3 low-Fazekas | |||
SVD-3 low Fazakas + low-EPVS | Fazakas score = 3 | |||
Larger vessel disease | Cortical stroke | ≥ 1 in any location coded as “present” | ||
Left middle cerebral artery territory infarct |
Continuous Variables | Mean Standard Deviation) | p-Value | Categorical Variables | Frequency (%) | p-Value | ||
---|---|---|---|---|---|---|---|
Ménière | Controls | Ménière | Controls | ||||
Age (years) 1 | Age (categories) | ||||||
<45 years | |||||||
45–55 years | |||||||
55–65 years | |||||||
65–75 years | |||||||
>75 years | |||||||
Fazekas score | Gender (male) | ||||||
T2 FLAIR (3D) | |||||||
Lacunes | |||||||
Infarction | |||||||
EPVS basal ganglia | <0.001 | Comorbidities | |||||
EPVS semiovale | Diabetes mellitus | ||||||
EPVS total | |||||||
SVD-3 | Hypertension | ||||||
SVD-3 low-fazekas | Dyslipidemia | ||||||
SVD-3 low-EPVS | Smoking | ||||||
SVD-3 low-fazekas + low-EPVS | <0.001 | Obesity | |||||
Obstructive sleep apnea | |||||||
Pulmonary disease * | |||||||
Cardiac disease | |||||||
Epilepsy | |||||||
Neurocognitive disease † | |||||||
Thyroid disease | |||||||
Previous chemotherapy | |||||||
Chronic headache | |||||||
Autoimmune disease | |||||||
OVERALL | |||||||
(≥2 of the listed comorbidities) | |||||||
(≥3 of the listed comorbidities) |
Age Category (Years) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | <45 | 45–55 | 55–65 | 65–75 | >75 | ||||||||||
MD | Control | p-Value | MD | Control | p-Value | MD | Control | p-Value | MD | Control | p-Value | MD | Control | p-Value | |
Gender (male) | |||||||||||||||
Lacunes | NC | NC | |||||||||||||
Infarction | NC | ||||||||||||||
(≥2 of the listed comorbidities) | |||||||||||||||
(≥3 of the listed comorbidities) | |||||||||||||||
Fazekas score | |||||||||||||||
EPVS total | |||||||||||||||
SVD-3 | NC | ||||||||||||||
SVD-3 low-fazekas | |||||||||||||||
SVD-3 low-EPVS | |||||||||||||||
SVD-3 low-fazekas + low-EPVS |
Independent Variable Predicting “Ménière” | β 1 | SE β 2 | OR (Exp β) 3 | [95% CI] for OR | p-Value |
---|---|---|---|---|---|
Age | 0.298 | ||||
Sex | 0.894 | ||||
≥2 of the listed comorbidities | 0.131 | ||||
SVD-3 score | 0.045 |
Independent Variable Predicting “Ménière” | β 1 | SE β 2 | OR (Exp β) 3 | [95% CI] for OR | p-Value |
---|---|---|---|---|---|
Age | |||||
Sex | |||||
≥2 of the listed comorbidities | |||||
SVD-3 low-Fazekas | |||||
Independent variable predicting “Ménière” | β 1 | SE β 2 | OR (Exp β) 3 | [95% CI] for OR | p-Value |
Age | |||||
Sex | |||||
≥2 of the listed comorbidities | |||||
SVD-3 low-EPVS | |||||
Independent variable predicting “Ménière” | β 1 | SE β 2 | OR (Exp β) 3 | [95% CI] for OR | p-Value |
Age | |||||
Sex | |||||
≥2 of the listed comorbidities | |||||
SVD-3 low-Fazekas + low-EPVS | 0.234 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, F.A.d.; Tarrio, J.; Moreira, B.; Nóbrega Pinto, A.; Meireles, L.; Reis Rego, Â. Cerebrovascular Burden and Its Association with Ménière’s Disease: A Case-Control Study. J. Otorhinolaryngol. Hear. Balance Med. 2024, 5, 13. https://doi.org/10.3390/ohbm5020013
Sousa FAd, Tarrio J, Moreira B, Nóbrega Pinto A, Meireles L, Reis Rego Â. Cerebrovascular Burden and Its Association with Ménière’s Disease: A Case-Control Study. Journal of Otorhinolaryngology, Hearing and Balance Medicine. 2024; 5(2):13. https://doi.org/10.3390/ohbm5020013
Chicago/Turabian StyleSousa, Francisco Alves de, João Tarrio, Bruno Moreira, Ana Nóbrega Pinto, Luís Meireles, and Ângela Reis Rego. 2024. "Cerebrovascular Burden and Its Association with Ménière’s Disease: A Case-Control Study" Journal of Otorhinolaryngology, Hearing and Balance Medicine 5, no. 2: 13. https://doi.org/10.3390/ohbm5020013
APA StyleSousa, F. A. d., Tarrio, J., Moreira, B., Nóbrega Pinto, A., Meireles, L., & Reis Rego, Â. (2024). Cerebrovascular Burden and Its Association with Ménière’s Disease: A Case-Control Study. Journal of Otorhinolaryngology, Hearing and Balance Medicine, 5(2), 13. https://doi.org/10.3390/ohbm5020013