Butyl Rubber-Based Composite: Thermal Degradation and Prediction of Service Lifetime
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Contamination Procedure
2.3. Scanning Electron Microscopy (SEM)
2.4. Tensile Tests
2.5. Thermal Gravimetric Analysis (TGA)
2.6. Dynamic Mechanical Thermal Analysis (DMTA)
3. Results and Discussion
3.1. Effect of Temperature on Mechanical Properties
3.2. Effect of Simultaneous Temperature and Metalworking Fluid on Properties, Structure and Morphology
3.3. Effect of Temperature and Metalworking Fuid (MWF) on Dynamical Thermo-Mechanical Properties
3.4. Effect of Temperature and MWF on Morphology, Thermal Properties and Service Lifetime of Butyl Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Youssf, O.; Hassanli, R.; Mills, J.E.; Ma, X.; Zhuge, Y. Cyclic Performance of Steel–Concrete–Steel Sandwich Beams with Rubcrete and LECA Concrete Core. J. Compos. Sci. 2019, 3, 5. [Google Scholar] [CrossRef]
- Youssf, O.; Hassanli, R.; Mills, J.E.; Skinner, W.; Ma, X.; Zhuge, Y.; Roychand, R.; Gravina, R. Influence of Mixing Procedures, Rubber Treatment, and Fibre Additives on Rubcrete Performance. J. Compos. Sci. 2019, 3, 41. [Google Scholar] [CrossRef]
- Aguilar-Bolados, H.; Contreras-Cid, A.; Neira-Carrillo, A.; Lopez-Manchado, M.; Yazdani-Pedram, M. Removal of Surfactant from Nanocomposites Films Based on Thermally Reduced Graphene Oxide and Natural Rubber. J. Compos. Sci. 2019, 3, 31. [Google Scholar] [CrossRef]
- Nohilé, C.; Dolez, P.I.; Vu-Khanh, T. Mechanical and Chemical Effects of Solvent Swelling on Butyl Rubber; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Ebnesajjad, S. 8—Characteristics of Adhesive Materials. In Handbook of Adhesives and Surface Preparation; Ebnesajjad, S., Ed.; William Andrew Publishing: Oxford, UK, 2011; pp. 137–183. [Google Scholar]
- Pape, P.G. 15—Adhesion Promoters. In Handbook of Adhesives and Surface Preparation; Ebnesajjad, S., Ed.; William Andrew Publishing: Oxford, UK, 2011; pp. 369–386. [Google Scholar]
- Rabilloud, G. 12—Adhesives for Electronics. In Handbook of Adhesives and Surface Preparation; Ebnesajjad, S., Ed.; William Andrew Publishing: Oxford, UK, 2011; pp. 259–299. [Google Scholar]
- Rabilloud, G. 9—Heat-Resistant Adhesives. In Handbook of Adhesives and Surface Preparation; Ebnesajjad, S., Ed.; William Andrew Publishing: Oxford, UK, 2011; pp. 85–220. [Google Scholar]
- Fabris, H.J.; Knauss, W.G. Synthetic Polymer Adhesives; Elsevier: Amsterdam, Netherlands, 1989; pp. 131–177. [Google Scholar]
- Haworth, J.P.; Baldwin, F.P. Butyl Rubber Properties and Compounding. Ind. Eng. Chem. 1942, 34, 1301–1308. [Google Scholar] [CrossRef]
- Ford, F.P.; Gessler, A.M. Some Properties of Butyl Rubber-Carbon Black Systems. Ind. Eng. Chem. 1952, 44, 819–824. [Google Scholar] [CrossRef]
- Yu, B.-C.; Jung, J.-W.; Park, K.; Goodenough, J.B. A new approach for recycling waste rubber products in Li–S batteries. Energy Environ. Sci. 2017, 10, 86–90. [Google Scholar] [CrossRef]
- Xu, W.; Que Hee, S.S. Permeation of a Metalworking Fluid through a Latex Glove Under Field Use Conditions. Bull. Environ. Contam. Toxicol. 2009, 84, 5. [Google Scholar] [CrossRef]
- Xu, W.; Que Hee, S.S. Swelling of four glove materials challenged by six metalworking fluids. Arch. Environ. Contam. Toxicol. 2008, 54, 1–8. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Prud’homme, R.E. Nanoscale Lamellar Assembly and Segregation Mechanism of Poly (3-hydroxybutyrate)/Poly (ethylene glycol) Blends. Macromolecules 2018, 51, 181–188. [Google Scholar]
- Nguyen-Tri, P.; Malajati, Y.; Lara, J.; Vu-Khanh, T. Photochemical aging of an e-PTFE/NOMEX® membrane used in firefighter protective clothing. Polym. Degrad. Stab. 2013, 98, 1300–1310. [Google Scholar]
- Nguyen-Tri, P.; El Aidani, R.; Leborgne, É.; Pham, T.; Vu-Khanh, T. Chemical ageingaging of a polyester nonwoven membrane used in aerosol and drainage filter. Polym. Degrad. Stab. 2014, 101, 71–80. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Nguyen Tri, P.; Nguyen, T.D.; El Aidani, R.; Trinh, V.T.; Decker, C. Accelerated degradation of water borne acrylic nanocomposites used in outdoor protective coatings. Polym. Degrad. Stab. 2016, 128, 65–76. [Google Scholar] [CrossRef]
- Nguyen Tri, P.; Rtimi, S.; Nguyen, T.A.; Vu, M.T. Chapter 5: Physics, Electrochemistry, Photochemistry, and Photoelectrochemistry of Hybrid Nanoparticles. In Noble Metal-Metal Oxide Hydrid Nanoparticles: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 95–123. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Le, X.H.; Dao, P.H.; Decker, C.; Nguyen-Tri, P. Stability of acrylic polyurethane coatings under accelerated aging tests and natural outdoor exposure: The critical role of the used photo-stabilizers. Prog. Org. Coat. 2018, 124, 137–146. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Nguyen, T.A.; Carriere, P.; Ngo, X.C. Nanocomposite Coatings: Preparation, Characterization, Properties, and Applications. Int. J. Corros. 2018, 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Tri, P.; Prud’homme, R.E. Nanoscale analysis of the photodegradation of polyester fibers by AFM-IR. J. Photochem. Photobiol. A Chem. 2019, 371, 196–204. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Tran, H.N.; Plamondon, C.O.; Tuduri, L.; Vo, D.-V.N.; Nanda, S.; Mishra, A.; Chao, H.-P.; Bajpai, A.K. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Prog. Org. Coat. 2019, 132, 235–256. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Rtimi, S.; Ouellet Plamondon, C. Nanomaterials-Based Coatings: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, 474p, ISBN 9780128158845. [Google Scholar]
- Tri Phuong, N.; Gilbert, V.; Chuong, B. Preparation of Recycled Polypropylene/ Organophilic Modified Layered Silicates Nanocomposites Part I: The Recycling Process of Polypropylene and the Mechanical Properties of Recycled Polypropylene/Organoclay Nanocomposites. J. Reinf. Plast. Compos. 2008, 27, 1983–2000. [Google Scholar] [CrossRef]
- Nguyen Tri, P.; Gilbert, V. Non-isothermal Crystallization Kinetics of Short Bamboo Fiber-reinforced Recycled Polypropylene Composites. J. Reinf. Plast. Compos. 2010, 29, 2576–2591. [Google Scholar] [CrossRef]
- Nguyen Tri, P.; Sollogoub, C.; Guinault, A. Relationship between fiber chemical treatment and properties of recycled pp/bamboo fiber composites. J. Reinf. Plast. Compos. 2010, 29, 3244–3256. [Google Scholar] [CrossRef]
- Boukehili, H.; Nguyen-Tri, P. Helium gas barrier and water absorption behavior of bamboo fiber reinforced recycled polypropylene. J. Reinf. Plast. Compos. 2012, 31, 1638–1651. [Google Scholar] [CrossRef]
- Nguyen Tri, P.; Guinault, A.; Sollogoub, C. Élaboration et propriétés des composites polypropylène recyclé/fibres de bambou. Matériaux Tech. 2012, 100, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Triki, E.; Nguyen-Tri, P.; Boukehili, H.; Vu-Khanh, T. Investigation of tearing mechanisms of woven textile. Polym. Compos. 2012, 33, 1578–1585. [Google Scholar] [CrossRef]
- Triki, E.; Vu-Khanh, T.; Nguyen-Tri, P.; Boukehili, H. Mechanics and mechanisms of tear resistance of woven fabrics. Theor. App. Fract. Mech. 2012, 61, 33–39. [Google Scholar] [CrossRef]
- Tri, P.N.; Domenek, S.; Guinault, A.; Sollogoub, C. Crystallization behavior of poly(lactide)/poly(β-hydroxybutyrate)/talc composites. J. Appl. Polym. Sci. 2013, 129, 3355–3365. [Google Scholar] [CrossRef] [Green Version]
- Triki, E.; Nguyen-Tri, P.; Gauvin, C.; Azaiez, M.; Vu-Khanh, T. Combined puncture/cutting of elastomer membranes by pointed blades: Characterization of mechanisms. J. Appl. Polym. Sci. 2015, 132, 42150. [Google Scholar] [CrossRef]
- Azizi, S.; David, E.; Fréchette, M.F.; Nguyen-Tri, P.; Ouellet-Plamondon, C.M. Electrical and thermal phenomena in low-density polyethylene/carbon black composites near the percolation threshold. J. Appl. Polym. Sci. 2019, 136, 47043. [Google Scholar] [CrossRef]
- Azizi, S.; David, E.; Fréchette, M.F.; Nguyen-Tri, P.; Ouellet-Plamondon, C.M. Electrical and thermal conductivity of ethylene vinyl acetate composite with graphene and carbon black filler. Polym. Test. 2018, 72, 24–31. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Prud’homme, R.E. Crystallization and Segregation Behavior at the Submicrometer Scale of PCL/PEG Blends. Macromolecules 2018, 51, 7266–7273. [Google Scholar] [CrossRef]
- Satyabrata, M.; Anh Nguyen, T.; Nguyen-Tri, P. Noble Metal-Metal Oxide Hybrid Nanoparticles; Fundamentals and Application; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, 675p, ISBN 978-0-12-814134-2. [Google Scholar]
- Duc Chinh, V.; Speranza, G.; Migliaresi, C.; Van Chuc, N.; Minh Tan, V.; Phuong, N.-T. Synthesis of Gold Nanoparticles Decorated with Multiwalled Carbon Nanotubes (Au-MWCNTs) via Cysteaminium Chloride Functionalization. Sci. Rep. 2019, 9, 5667. [Google Scholar] [CrossRef]
- Nguyen Tri, P.; Nguyen, T.A.; Nguyen, T.H.; Carriere, P. Chapter 7: Antibacterial Behavior of Hybrid Nanoparticles. In Noble Metal-Metal Oxide Hydrid Nanoparticles: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 141–155. [Google Scholar]
- Nguyen Tri, P.; Ouellet-Plamondon, C.; Rtimi, S.; Assadi, A.A.; Nguyen, T.A. Chapter 3 Methods for Synthesis of Hybrid Nanoparticles. In Noble Metal-Metal Oxide Hydrid Nanoparticles: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 51–63. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Nguyen, V.; Nguyen, T. Biological Activity and Nanostructuration of Fe3O4-Ag/High Density Polyethylene Nanocomposites. J. Compos. Sci. 2019, 3, 34. [Google Scholar] [CrossRef]
- Ben Hassine, M.; Naït-Abdelaziz, M.; Zaïri, F.; Colin, X.; Tourcher, C.; Marque, G. Time to failure prediction in rubber components subjected to thermal ageing: A combined approach based upon the intrinsic defect concept and the fracture mechanics. Mech. Mater. 2014, 79, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Syed, I.H.; Vouagner, P.; Fleck, F.; Lacayo-Pineda, J. Nonlinearity in the Mechanical Response of Rubber as Investigated by High-Frequency DMA. Polymers 2019, 11, 581. [Google Scholar] [CrossRef] [PubMed]
- Xiang, K.; Huang, G.; Zheng, J.; Wang, X.; Huang, J. Investigation on the thermal oxidative aging mechanism and lifetime prediction of butyl rubber. Macromol. Res. 2013, 21, 10–16. [Google Scholar] [CrossRef]
- Haghtalab, A.; Rahimi, S. Study of viscoelastic properties of nanocomposites of SiO2-acrylonitrile-butadiene-styrene. J. Appl. Polym. Sci. 2013, 127, 4318–4327. [Google Scholar] [CrossRef]
- Lewicki, J.P.; Liggat, J.J.; Hayward, D.; Pethrick, R.A.; Patel, M. Degradative Thermal Analysis and Dielectric Spectroscopy Studies of Aging in Polysiloxane Nanocomposites. ACS Symp. Ser. 2009, 1004, 239–254. [Google Scholar]
- Rivlin, R.S. Large Elastic Deformations of Isotropic Materials. IV. Further Developments of the General Theory. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1948, 241, 379–397. [Google Scholar] [CrossRef]
- Rivlin, R.S. Large Elastic Deformations of Isotropic Materials. I. Fundamental Concepts. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1948, 240, 459–490. [Google Scholar] [CrossRef]
- Arimoto, H. α–γ Transition of nylon 6. J. Polym. Sci. Part A Gen. Pap. 1964, 2, 2283–2295. [Google Scholar] [CrossRef]
- Slichter, W.P. Molecular motion in polyamides. J. Polym. Sci. 1959, 35, 77–92. [Google Scholar] [CrossRef]
- Hagen, R.; Salmén, L.; Stenberg, B. Effects of the type of crosslink on viscoelastic properties of natural rubber. J. Polym. Sci. Part B Polym. Phys. 1996, 34, 1997–2006. [Google Scholar] [CrossRef]
- Gordon, M. The Physics of Rubber Elasticity (Third Edition). L. R. G.; Treloar, Clarendon Press, Oxford. 1975 pp. xii + 370. Price: £14.00. Br. Polym. J. 1976, 8, 39. [Google Scholar] [CrossRef]
- Sombatsompop, N. Investigation of Swelling Behavior of NR Vulcanisates. Polym.-Plast. Technol. Eng. 1998, 37, 19–39. [Google Scholar] [CrossRef]
- Mark, J.E. Experimental Determinations of Crosslink Densities. Rubber Chem. Technol. 1982, 55, 762–768. [Google Scholar] [CrossRef]
- Priss, L.S. Molecular origin of constants in the theory of rubber-like elasticity considering network chains steric interaction. Pure Appl. Chem. 1981, 53, 1581–1596. [Google Scholar] [CrossRef]
- Mark, J.E. The Constants 2C1and 2C2 in Phenomeno-Logical Elasticity Theory and Their Dependence on Experimental Variables. Rubber Chem. Technol. 1975, 48, 495–512. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Tuduri, L.; Triti, E.; Gauvin, C.; Vu-Khanh, T. Swelling behavior of polymeric membranes to metalworking fluids. J. Appl. Polym. Sci. 2018, 135, 45717. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Triki, E.; Tuduri, L.; Gauvin, C.; Vu-Khanh, T. Effet des fluides de coupe sur la résistance à la coupure et à la perforation des gants de protection; Bibliothèque et Archives nationales du Québec ed, IRSST: Montréal, QC, Canada, 2016. [Google Scholar]
- Ha-Anh, T.; Vu-Khanh, T. Prediction of mechanical properties of polychloroprene during thermo-oxidative aging. Polym. Test. 2005, 24, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Gumbrell, S.M.; Mullins, L.; Rivlin, R.S. Departures of the elastic behaviour of rubbers in simple extension from the kinetic theory. Trans. Faraday Soc. 1953, 49, 1495–1505. [Google Scholar] [CrossRef]
- Allen, G.; Kirkham, M.J.; Padget, J.; Price, C. Thermodynamics of rubber elasticity at constant volume. Trans. Faraday Soc. 1971, 67, 1278–1292. [Google Scholar] [CrossRef]
- Dutta, N.K.; Khastgir, D.; Tripathy, D.K. The effect of carbon black concentration on the dynamic mechanical properties of bromobutyl rubber. J. Mater. Sci. 1991, 26, 177–188. [Google Scholar] [CrossRef]
- García, M.; Garmendia, I.; García, J. Influence of natural fiber type in eco-composites. J. Appl. Polym. Sci. 2008, 107, 2994–3004. [Google Scholar] [CrossRef]
- Ali, S.; Ramzan, S.; Raza, R.; Ahmed, F.; Ullah, S.; Hussain, R.; Ali, S. Thermal and Thermo-Mechanical Behavior of Butyl based Rubber Exposed to Silicon Oil at Elevated Temperature. J. Chem. Soc. Pakistan 2013, 35, 1437–1444. [Google Scholar]
- Barrere, C.; Dal Maso, F. Résines époxy réticulées par des polyamines: Structure et propriétés. Revue de l’Institut Français du Pétrole 2006, 52, 317–335. [Google Scholar] [CrossRef]
- Fox, T.G.; Flory, P.J. Second-Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight. J. Appl. Phys. 1950, 21, 581–591. [Google Scholar] [CrossRef]
- Kannan, G.K.; Gaikewad, L.V.; Nirmala, L.; Kumar, N.S. Thermal ageing studies of bromo-butyl rubber used in NBCpersonal protective equipment. J. Sci. Ind. Res. 2010, 69, 841–849. [Google Scholar]
- Grandcoin, J.; Boukamel, A.; Lejeunes, S. A micro-mechanically based continuum damage model for fatigue life prediction of filled rubbers. Int. J. Solids Struct. 2014, 51, 1274–1286. [Google Scholar] [CrossRef] [Green Version]
- El Aidani, R.; Dolez, P.I.; Vu-Khanh, T. Effect of thermal aging on the mechanical and barrier properties of an e-PTFE/Nomex® moisture membrane used in firefighters’ protective suits. J. Appl. Polym. Sci. 2011, 121, 3101–3110. [Google Scholar] [CrossRef]
Exposure Time (h) | Exposure Temperature | |||||
---|---|---|---|---|---|---|
80 °C | 100 °C | 120 °C | ||||
Etheo | Eexp | Etheo | Eexp | Etheo | Eexp | |
0 | 4.08 (0.42) | 3.40 (0.04) | 3.78 (0.06) | 3.00 (0.05) | 4.80 (0.30) | 4.11 (0.16) |
1 | 3.90 (0.36) | 2.89 (0.2) | 3.93 (0.48) | 3.15 (0.25) | 6.57 (0.12) | 6.10 (1.10) |
2 | 3.99 (0.30) | 3.01 (0.09) | 3.90 (0.10) | 3.20 (0.13) | 8.12 0.24) | 7.43 (0.18) |
4 | 3.78 (0.24) | 2.99 (0.03) | 3.66 (0.36) | 2.88 (0.18) | 6.65 (0.66) | 5.45 (0.85) |
6 | 3.78 (0.42) | 2.98 (0.10) | 3.72 (0.04) | 3.01 (0.02) | 5.44 (0.18) | 4.57 (0.02) |
14 | 3.84 (0.24) | 2.98 (0.09) | 4.14 (0.09) | 3.27 (0.01) | 6.35 (0.36) | 5.08 (0.14) |
24 | 3.90 (0.36) | 2.96 (0.02) | 4.08 (0.09) | 3.30 (0.09) | 6.08 (0.16) | 4.80 (0.12) |
t (h) | Exposure Temperatures | |||||
---|---|---|---|---|---|---|
80 °C | 100 °C | 120 °C | ||||
Etheo | Eexp | Etheo | Eexp | Etheo | Eexp | |
0 | 3.72 (0.36) | 2.87 (0.20) | 3.36 (0.36) | 2.70 (0.22) | 4.74 (0.15) | 4.26 (0.28) |
1 | 3.36 (0.36) | 2.64 (0.16) | 3.03 (0.12) | 2.51 (0.09) | 6.76 (0.54) | 6.28 (0.17) |
2 | 3.12 (0.30) | 2.43 (0.08) | 3.03 (0.20) | 2.52 (0.01) | 6.78 (0.09) | 6.46 (0.01) |
4 | 3.00 (0.24) | 2.41 (0.05) | 2.82 (0.30) | 2.33 (0.11) | 3.804 (0.36) | 3.26 (0.18) |
6 | 2.70 (0.42) | 2.30 (0.03) | 2.52 (0.12) | 2.18 (0.03) | 3.72 (0.36) | 3.41 (0.03) |
14 | 2.46 (0.24) | 2.31 (0.05) | 2.40 (0.48) | 2.01 (0.05) | 3.66 (0.18) | 3.15 (0.04) |
24 | 2.22 (0.36) | 1.98 (0.02) | 2.16 (0.42) | 1.92 (0.06) | 3.64 (0.04) | 3.06 (0.05) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen-Tri, P.; Triki, E.; Nguyen, T.A. Butyl Rubber-Based Composite: Thermal Degradation and Prediction of Service Lifetime. J. Compos. Sci. 2019, 3, 48. https://doi.org/10.3390/jcs3020048
Nguyen-Tri P, Triki E, Nguyen TA. Butyl Rubber-Based Composite: Thermal Degradation and Prediction of Service Lifetime. Journal of Composites Science. 2019; 3(2):48. https://doi.org/10.3390/jcs3020048
Chicago/Turabian StyleNguyen-Tri, Phuong, Ennouri Triki, and Tuan Anh Nguyen. 2019. "Butyl Rubber-Based Composite: Thermal Degradation and Prediction of Service Lifetime" Journal of Composites Science 3, no. 2: 48. https://doi.org/10.3390/jcs3020048
APA StyleNguyen-Tri, P., Triki, E., & Nguyen, T. A. (2019). Butyl Rubber-Based Composite: Thermal Degradation and Prediction of Service Lifetime. Journal of Composites Science, 3(2), 48. https://doi.org/10.3390/jcs3020048