Structural Health Monitoring for Advanced Composite Structures: A Review
Abstract
:1. Introduction
- A network of sensors, permanently attached to the structure. This aspect establishes the main difference from conventional non-destructive testing (NDT) procedures, and is essential for performing automated inspections.
- On-board data handling and computing facilities. The high number of sensors continuously produces a large amount of data to be processed in real-time. SHM was feasible when large-capacity PCs were available (in the mid-1980s).
- Algorithms that compare stored data from the pristine structure with recently acquired data, after correcting for environmental factors, to calculate a damage index and to inform about damage existence, localization, and type.
2. Benefits of Structural Health Monitoring
- The purely corrective maintenance strategy, which involves doing nothing until failure is clearly visible; it has the advantage of having the lowest initial costs. Among its disadvantages, besides the risk of catastrophic failure, are the fact that damage growth by usage occurs faster and faster, meaning repairing costs may be higher; the structure will be out of service at an unpredictable date, so maintenance cannot be scheduled. It is only acceptable for low responsibility, very lightly loaded structures (the level of service loads and overloads also influences the slope of the degradation curve).
- Time-based maintenance, which involves regular inspection periods which are visual or supported by NDT methods and which require access to the structure and maybe disassembly. This is the procedure currently employed in aerospace and also for large wind turbine blades; once a year, an industrial climber ropes from the rotor and inspects the leading and the trailing edge of the blade. This approach has allowed the aircraft industry to reach a very high safety level, and the risk of accident due to structural failures is extremely low; however, the impact of these repeated inspections on the LCC is significant, with it even equalling the acquisition costs.
- Condition-based maintenance refers to the installation of permanent sensors on the structure/system. By means of early fault detection, severe damage can be avoided, and maintenance works can be scheduled to avoid inconvenient stop-times. With time-scheduled maintenance very often the only result from the inspection is the verification of the non-existence of damage; CBM maintenance works are only performed when there is a risk to the structure.
3. Classification of SHM Technologies
4. In-Service Damages in Composite Structures
5. Recent Advances on SHM Techniques and Standing Issues
5.1. Vibration Methods
5.2. Strain-Based Methods
5.3. Guided Waves
5.4. Acoustic Emission
5.5. Carbon Nanotube-Doped Resins
6. Probability of Detection
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Askaripour, K.; Zak, A. A Survey of Scrutinizing Delaminated Composites via Various Categories of Sensing Apparatus. J. Compos. Sci. 2019, 3, 95. [Google Scholar] [CrossRef] [Green Version]
- Coronado, D.; Fischer, K. Condition Monitoring of Wind Turbines: State of the Art, User Experience and Recommendations; Final Report VGB-Nr.383; Fraunhofer IWES: Bremerhaven, Germany, 2015. [Google Scholar]
- Roach, D. Does the Maturity of Structural Health Monitoring Technology match user Readiness? In Proceedings of the International Workshop on SHM, Stanford, CA, USA, 13–15 September 2011. [Google Scholar]
- Cawley, P. Structural health monitoring: Closing the gap between research and industrial deployment. Struct. Health Monit. 2018, 17, 1225–1244. [Google Scholar] [CrossRef] [Green Version]
- Farrar, C.R.; Doebling, S.W.; Nix, D.A. Vibration-based structural damage identification. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 2001, 359, 131–149. [Google Scholar] [CrossRef]
- Yan, A.-M.; Kerschen, G.; De Boe, P.; Golinval, J.-C. Structural damage diagnosis under varying environmental conditions—Part I: A linear analysis. Mech. Syst. Signal Process. 2005, 19, 847–864. [Google Scholar] [CrossRef]
- Sampaio, R.P.C.; Maia, N.M.M.; Silva, J.M.M. Damage detection using the frequency-response-function curvature method. J. Sound Vib. 1999, 226, 1029–1042. [Google Scholar] [CrossRef]
- Montalvao, D.; Maia, N.M.; Ribeiro, A.M. A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib. Digest 2006, 38, 295–324. [Google Scholar] [CrossRef]
- Fan, W.; Qiao, P. Vibration-based damage identification methods: A review and comparative study. Struct. Health Monit. 2011, 10, 83–111. [Google Scholar] [CrossRef]
- LeBlanc, M.; Huang, S.Y.; Ohn, M.; Measures, R.M.; Güemes, A.; Othonos, A. Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis. Opt. Lett. 1996, 21, 1405–1407. [Google Scholar] [CrossRef]
- Güemes, A.; Diaz-Carrillo, S.; Menendez, J.M. Measurement of strain distribution in bonded joints by fiber Bragg gratings. Proc. SPIE 1998, 3330, 264–271. [Google Scholar]
- Güemes, A.; Menéndez, J.M. Response of Bragg grating fiber-optic sensors when embedded in composite laminates. Compos. Sci. Technol. 2002, 62, 959–966. [Google Scholar] [CrossRef]
- Majumder, M.; Gangopadhyay, T.K.; Chakraborty, A.K.; Dasgupta, K.; Bhattacharya, D.K. Fibre Bragg gratings in structural health monitoring-Present status and applications. Sens. Actuators A Phys. 2008, 147, 150–164. [Google Scholar] [CrossRef]
- López-Higuera, J.M. (Ed.) Handbook of Optical Fibre Sensing Technology; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Guo, H.; Xiao, G.; Mrad, N.; Yao, J. Fiber optic sensors for structural health monitoring of air platforms. Sensors 2011, 11, 3687–3705. [Google Scholar] [CrossRef]
- Luyckx, G.; Voet, E.; Lammens, N.; Degrieck, J. Strain measurements of composite laminates with embedded fibre bragg gratings: Criticism and opportunities for research. Sensors 2011, 11, 384–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sierra-Pérez, J.; Güemes, A.; Mujica, L.E. Damage detection by using FBGs and strain field pattern recognition techniques. Smart Mater. Struct. 2013, 22, 025011. [Google Scholar] [CrossRef] [Green Version]
- Croxford, A.J.; Wilcox, P.D.; Drinkwater, B.W.; Konstantinidis, G. Strategies for guided-wave structural health monitoring. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 2961–2981. [Google Scholar] [CrossRef]
- Raghavan, A.; Cesnik, C.E.S. Review of guided-wave structural health monitoring. Shock Vib. Digest 2007, 39, 91–114. [Google Scholar] [CrossRef]
- Staszewski, W.J.; Mahzan, S.; Traynor, R. Health monitoring of aerospace composite structures—Active and passive approach. Compos. Sci. Technol. 2009, 69, 1678–1685. [Google Scholar] [CrossRef]
- Rose, J.L. Ultrasonic Waves in Solid Media; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Ostachowicz, W.; Kusela, P.; Krawczuk, M.; Zak, A. Guided Waves in Structures for SHM: The Time-Domain Spectral Element, Method; John Wiley & Sons, Ltd.: London, UK, 2012. [Google Scholar]
- Ihn, J.-B.; Chang, F.-K. Pitch-catch active sensing methods in structural health monitoring for aircraft structures. Struct. Health Monit. 2008, 7, 5–19. [Google Scholar] [CrossRef]
- Wang, C.H.; Rose, J.T.; Chang, F.-K. A synthetic time-reversal imaging method for structural health monitoring. Smart Mater. Struct. 2004, 13, 415. [Google Scholar] [CrossRef]
- Ciang, C.-C.; Lee, J.-R.; Bang, H.-J. Structural health monitoring for a wind turbine system: A review of damage detection methods. Meas. Sci. Technol. 2008, 19, 122001. [Google Scholar] [CrossRef] [Green Version]
- Giurgiutiu, V.; Santoni-Bottai, G. Structural health monitoring of composite structures with piezoelectric-wafer active sensors. AIAA J. 2011, 49, 565–581. [Google Scholar] [CrossRef] [Green Version]
- Park, H.W.; Sohn, H.; Law, K.H.; Farrar, C.R. Time reversal active sensing for health monitoring of a composite plate. J. Sound Vib. 2007, 302, 50–66. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Soutis, C. Enhanced composites integrity through structural health monitoring. Appl. Compos. Mater. 2012, 19, 813–829. [Google Scholar] [CrossRef]
- Ciampa, F.; Meo, M. A new algorithm for acoustic emission localization and flexural group velocity determination in anisotropic structures. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1777–1786. [Google Scholar] [CrossRef]
- De Oliveira, R.; Marques, A.T. Health monitoring of FRP using acoustic emission and artificial neural networks. Comput. Struct. 2008, 86, 367–373. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Bao, J. Embedded-ultrasonics structural radar for in situ structural health monitoring of thin-wall structures. Struct. Health Monit. 2004, 3, 121–140. [Google Scholar] [CrossRef] [Green Version]
- Yoo, B.; Purekar, A.S.; Zhang, Y.; Pines, D.J. Piezoelectric-paint-based two-dimensional phased sensor arrays for structural health monitoring of thin panels. Smart Mater. Struct. 2010, 19, 075017. [Google Scholar] [CrossRef]
- Roach, D. Real time crack detection using mountable comparative vacuum monitoring sensors. Smart Struct. Syst. 2009, 5, 317–328. [Google Scholar] [CrossRef]
- Stehmeier, H.; Speckmann, H. Comparative vacuum monitoring (CVM). In Proceedings of the 2nd European Workshop on Structural Health Monitoring, Munich, Germany, 7–9 July 2004. [Google Scholar]
- Giurgiutiu, V.; Rogers, C.A. Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE. In Proceedings of the 5th Annual International Symposium on Smart Structures and Materials, San Diego, CA, USA, 27 July 1998; Volume 3329, pp. 536–547. [Google Scholar]
- Bhalla, S.; Gupta, A.; Bansal, S.; Garg, T. Ultra low-cost adaptations of electro-mechanical impedance technique for structural health monitoring. J. Intell. Mater. Syst. Struct. 2009, 20, 991–999. [Google Scholar] [CrossRef]
- Kang, I.; Schulz, M.J.; Kim, J.H.; Shanov, V.; Shi, D. A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 2006, 15, 737–748. [Google Scholar] [CrossRef]
- Loh, K.J.; Hou, T.-C.; Lynch, J.P.; Kotov, N.A. Carbon nanotube sensing skins for spatial strain and impact damage identification. J. Nondestruct. Eval. 2009, 28, 9–25. [Google Scholar] [CrossRef]
- Goldfine, N.; Zilberstein, V.; Washabaugh, A.; Schlicker, D.; Shay, I.; Grundy, D. Eddy current sensor networks for aircraft fatigue monitoring. Mater. Eval. 2003, 61, 852–859. [Google Scholar]
- Speckmann, H.; Henrich, R. Structural health monitoring (SHM)–overview on technologies under development. In Proceedings of the World Conference on NDT, Montreal, QC, Canada, 30 August–3 September 2004. [Google Scholar]
- Boller, C.; Chang, F.K.; Fujino, Y. (Eds.) Encyclopedia of Structural Health Monitoring; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Ostachowicz, W.; Güemes, A. (Eds.) New Trends in Structural Health Monitoring; Springer: Cham, Switzerland, 2013. [Google Scholar]
- Ostré, B.; Bouvet, C.; Minot, C.; Aboissière, J. Experimental analysis of CFRP laminates subjected to compression after edge impact. Compos. Struct. 2016, 152, 767–778. [Google Scholar] [CrossRef] [Green Version]
- FAA Advisory Circular AC nb 20-107B Composite Aircraft structures (9 August 2009). Available online: www.faa.gov/documentLibrary/media/Advisory_Circular/AC20-107B.pdf (accessed on 23 January 2020).
- Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors, 2nd ed.; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Güemes, A.; Fernández-López, A.; Soller, B. Optical fiber distributed sensing - physical principles and applications. Struct. Health Monit. 2010, 9, 233–245. [Google Scholar] [CrossRef]
- Martinez-Luengo, M.; Kolios, A.; Wang, L. Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm. Renew. Sustain. Energy Rev. 2016, 64, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Worden, K.; Staszewski, W.J.; Hensman, J.J. Natural computing for mechanical systems research: A tutorial overview. Mech. Syst. Signal Process. 2011, 25, 4–111. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective; John Wiley & Sons, Ltd.: London, UK, 2013; ISBN 9781119994336. [Google Scholar]
- Bao, Y.; Chen, Z.; Wei, S.; Xu, Y.; Tang, Z.; Li, H. The State of the Art of Data Science and Engineering in Structural Health Monitoring. Engineering 2019, 5, 234–242. [Google Scholar] [CrossRef]
- Goyal, D.; Pabla, B.S. The vibration monitoring methods and signal processing techniques for structural health monitoring: A review. Arch. Comput. Methods Eng. 2016, 23, 585–594. [Google Scholar] [CrossRef]
- Amafabia, D.M.; Montalvão, D.; David-West, O.; Haritos, G. A Review of Structural Health Monitoring Techniques as Applied to Composite Structures. Struct. Durab. Health Monit. 2017, 11, 91–147. [Google Scholar]
- Gomes, G.F.; Mendéz, Y.A.D.; Da Silva Lopes Alexandrino, P.; Da Cunha, S.S., Jr.; Ancelotti, A.C., Jr. The use of intelligent computational tools for damage detection and identification with an emphasis on composites—A review. Compos. Struct. 2018, 196, 44–54. [Google Scholar] [CrossRef]
- Di Sante, R. Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications. Sensors 2015, 15, 18666–18713. [Google Scholar] [CrossRef] [PubMed]
- Kinet, D.; Mégret, P.; Goossen, K.W.; Qiu, L.; Heider, D.; Caucheteur, C. Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions. Sensors 2014, 14, 7394–7419. [Google Scholar] [CrossRef] [PubMed]
- Güemes, A.; Fernández-López, A.; Díaz-Maroto, P.F.; Lozano, A.; Sierra-Perez, J. Structural health monitoring in composite structures by fiber-optic sensors. Sensors 2018, 18, 1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isoe, A.; Kojima, H.; Enomoto, K.; Takeda, N. Outline of the Japanese National Project on Structural Health Monitoring System for Aircraft Composite Structures and JASTAC Project. In Proceedings of the 8th EWSHM 2016, Bilbao, Spain, 5–8 July 2016. [Google Scholar]
- Aliabadi, M.H.F.; Sharif Khodeai, Z. Structural Health Monitoring for Advanced Composite Structures; World Scientific Publishing Ltd.: London, UK, 2018. [Google Scholar]
- Memmolo, V.; Monaco, E.; Boffa, N.D.; Maio, L.; Ricci, F. Guided wave propagation and scattering for structural health monitoring of stiffened composites. Compos. Struct. 2018, 184, 568–580. [Google Scholar] [CrossRef]
- Salmanpour, M.S.; Sharif Khodaei, Z.; Aliabadi, M.H. Guided wave temperature correction methods in structural health monitoring. J. Intell. Mater. Syst. Struct. 2017, 28, 604–618. [Google Scholar] [CrossRef] [Green Version]
- Mitra, M.; Gopalakrishnan, S. Guided wave based structural health monitoring: A review. Smart Mater. Struct. 2016, 25, 053001. [Google Scholar] [CrossRef]
- Miniaci, M.; Mazzotti, M.; Radzienski, M.; Kudela, P.; Kherraz, N.; Bosia, F.; Pugno, N.M.; Ostachowicz, W. Application of a laser-based time reversal algorithm for impact localization in a stiffened aluminium plate. Front. Mater. 2019, 6, 30. [Google Scholar] [CrossRef]
- Janapati, V.; Kopsaftopoulos, F.; Li, F.L.; Lee, S.; Chang, F.-K. Damage Detection Sensitivity Characterization of Acousto-Ultrasound-based SHM Techniques. Struct. Health Monit. 2016, 15, 143–161. [Google Scholar] [CrossRef]
- Ono, K. Review on structural health evaluation with acoustic emission. Appl. Sci. 2018, 8, 958. [Google Scholar] [CrossRef] [Green Version]
- Mei, H.; Haider, M.F.; Joseph, R.; Migot, A.; Giurgiutiu, V. Recent advances in piezoelectric wafer active sensors for structural health monitoring applications. Sensors 2019, 19, 383. [Google Scholar] [CrossRef] [Green Version]
- Zaporotskova, I.V.; Borozninaa, N.P.; Parkhomenkob, Y.N.; Kozhitovb, L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater. 2016, 2, 95–105. [Google Scholar] [CrossRef]
- Han, Z.; Bilotti, E.; Peijs, T. The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: A review. Nanocomposites 2015, 1, 167–184. [Google Scholar]
- Xiao, B.; Yang, B.; Xuan, F.; Wan, Y.; Hu, C.; Jin, P.; Lei, H.; Xiang, Y.; Yang, K. In-Situ Monitoring of a Filament Wound Pressure Vessel by the MWCNT Sensor under Hydraulic Fatigue Cycling and Pressurization. Sensors 2019, 19, 1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loyola, B.R.; La Saponara, V.; Loh, K.J.; Briggs, T.M.; O’Bryan, G.; Skinner, J.L. Spatial Sensing Using Electrical Impedance Tomography. IEEE Sens. J. 2013, 13, 2357. [Google Scholar] [CrossRef]
- MIL-HDBK 1823A, ‘Non-destructive Evaluation System Reliability Assessment’ (2009). Available online: http://www.statisticalengineering.com/mh1823/MIL-HDBK-1823A(2009).pdf (accessed on 23 January 2020).
- Aldrin, J.C.; Annis, C.; Sabbagh, H.A.; Lindgren, E.A. Best Practices for Evaluating the Capability of Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) Techniques for Damage Characterization. AIP Conf. Proc. 2016, 1706, 200002. [Google Scholar] [CrossRef] [Green Version]
- Güemes, A.; Fernandez-Lopez, A.; Frovel, M.; Pintado, J.M.; Garcia-Ramirez, J.; Reyes, E. Experimental validation of a fiber-optic based SHM system. In Proceedings of the 7th Asian-Pacific Workshop on SHM, Hong Kong, China, 12–15 November 2018. [Google Scholar]
- Shapira, O.; Ben-Simon, U.; Bergman, A.; Shoham, S.; Glam, B.; Kressel, I.; Yehoshua, T.; Tur, M. Structural Health Monitoring of a UAV Fleet Using Fiber Optic Distributed Strain Sensing. In Proceedings of the IWSHM 2015, Stanford, CA, USA, 1–3 September 2015. [Google Scholar]
- Miniaci, M.; Gliozzi, A.; Morvan, B.; Krushynska, A.; Bosia, F.; Scalerandi, M.; Pugno, N. Proof of concept for an ultrasensitive technique to detect and localize sources of elastic nonlinearity using phononic crystals. Phys. Rev. Lett. 2017, 118, 214301. [Google Scholar] [CrossRef] [Green Version]
Physical Principle | Techniques | Main Sensor Type | Range | Refs |
---|---|---|---|---|
Continuous Mechanics | Vibration methods | Accelerometers | Global local | [5,6,7,8,9] |
Strain-based methods | Fiber optic sensors | Mid-range | [10,11,12,13,14,15,16,17] | |
Elastic waves | Guided waves | PZT | Mid-range (m) | [18,19,20,21,22,23,24,25,26,27,28] |
Acoustic emission | PZT, AE probes | Mid-range (m) | [29,30] | |
Phased arrays | PZT | Mid-range (m) | [31,32] | |
Fluid dynamics | Comparative vacuum monitoring (CVM) | Patch with microchannels | Local | [33,34] |
Electricity and magnetism | Electromechanical impedance (EMI) | PZT | Local | [35,36] |
Electrical impedance tomography | CNT-doped resins | Local | [37,38] | |
Eddy currents | Eddy probes | Local | [39,40] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güemes, A.; Fernandez-Lopez, A.; Pozo, A.R.; Sierra-Pérez, J. Structural Health Monitoring for Advanced Composite Structures: A Review. J. Compos. Sci. 2020, 4, 13. https://doi.org/10.3390/jcs4010013
Güemes A, Fernandez-Lopez A, Pozo AR, Sierra-Pérez J. Structural Health Monitoring for Advanced Composite Structures: A Review. Journal of Composites Science. 2020; 4(1):13. https://doi.org/10.3390/jcs4010013
Chicago/Turabian StyleGüemes, Alfredo, Antonio Fernandez-Lopez, Angel Renato Pozo, and Julián Sierra-Pérez. 2020. "Structural Health Monitoring for Advanced Composite Structures: A Review" Journal of Composites Science 4, no. 1: 13. https://doi.org/10.3390/jcs4010013
APA StyleGüemes, A., Fernandez-Lopez, A., Pozo, A. R., & Sierra-Pérez, J. (2020). Structural Health Monitoring for Advanced Composite Structures: A Review. Journal of Composites Science, 4(1), 13. https://doi.org/10.3390/jcs4010013