Non-Isothermal Crystallization Kinetics of Injection Grade PHBV and PHBV/Carbon Nanotubes Nanocomposites Using Isoconversional Method
Abstract
:1. Introduction
2. Theoretical Background
3. Experimental
3.1. Materials
3.2. Production of PHBV/CNT Nanocomposites
3.3. Characterization of PHBV/CNT Nanocomposites
4. Results
4.1. Differential Scanning Calorimetry (DSC)
4.2. Polarized Light Optical Microscopy (PLOM)
4.3. Shore D Hardness
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Montanheiro, T.L.; Campos, T.M.; Montagna, L.S.; da Silva, A.P.; Ribas, R.G.; de Menezes, B.R.; Passador, F.R.; Thim, G.P. Influence of CNT pre-dispersion into PHBV/CNT nanocomposites and evaluation of morphological, mechanical and crystallographic features. Mater. Res. Express 2019, 6, 105375. [Google Scholar] [CrossRef]
- Lemes, A.P.; Montanheiro, T.L.A.; Passador, F.R.; Durán, N. Nanocomposites of Polyhydroxyalkanoates Reinforced with Carbon Nanotubes: Chemical and Biological Properties. In Eco-friendly Polymer Nanocomposites; Springer: New Delhi, India, 2015; pp. 79–108. [Google Scholar]
- Castro-Mayorga, J.L.; Fabra, M.J.; Lagaron, J.M. Stabilized nanosilver based antimicrobial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. Innov. Food Sci. Emerg. Technol. 2016, 33, 524–533. [Google Scholar] [CrossRef]
- Rivera-Briso, A.; Serrano-Aroca, Á. Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers 2018, 10, 732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montanheiro, T.L.; Montagna, L.S.; Patrulea, V.; Jordan, O.; Borchard, G.; Lobato, G.M.M.; Catalani, L.H.; Lemes, A.P. Evaluation of cellulose nanocrystal addition on morphology, compression modulus and cytotoxicity of poly (3-hydroxybutyrate- co -3-hydroxyvalerate) scaffolds. J. Mater. Sci. Mater. Life Sci. 2019, 54, 7198–7210. [Google Scholar] [CrossRef]
- do Amaral Montanheiro, T.L.; Montagna, L.S.; Patrulea, V.; Jordan, O.; Borchard, G.; Ribas, R.G.; Campos, T.M.B.; Thim, G.P.; Lemes, A.P. Enhanced water uptake of PHBV scaffolds with functionalized cellulose nanocrystals. Polym. Test. 2019, 79, 106079. [Google Scholar] [CrossRef]
- Lemes, A.P.; Montanheiro, T.L.; Silva, A.P.; Durán, N. PHBV/MWCNT Films: Hydrophobicity, Thermal and Mechanical Properties as a Function of MWCNT Concentration. J. Compos. Sci. 2019, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- de Menezes, B.R.C.; Rodrigues, K.F.; da Silva Fonseca, B.C.; Ribas, R.G.; do Amaral Montanheiro, T.L.; Thim, G.P. Recent advances on the use of carbon nanotubes as smart biomaterials. J. Mater. Chem. B 2019, 7, 1343–1360. [Google Scholar] [CrossRef]
- Bezzon, V.D.N.; Montanheiro, T.L.A.; de Menezes, B.R.C.; Ribas, R.G.; Righetti, V.A.N.; Rodrigues, K.F.; Thim, G.P. Carbon nanostructure-based sensors: A brief review on recent advances. Adv. Mater. Sci. Eng. 2019, 2019, 4293073. [Google Scholar] [CrossRef] [Green Version]
- Montanheiro, T.L.A.; Cristóvan, F.H.; Machado, J.P.B.; Tada, D.B.; Durán, N.; Lemes, A.P. Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. J. Mater. Res. 2014, 30, 55–65. [Google Scholar] [CrossRef]
- da Silva, A.P.; do Amaral Montanheiro, T.L.; Montagna, L.S.; Andrade, P.F.; Durán, N.; Lemes, A.P. Effect of carbon nanotubes on the biodegradability of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. J. Appl. Polym. Sci. 2019, 2019, 48020. [Google Scholar] [CrossRef]
- Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105–1136. [Google Scholar] [CrossRef]
- do Amaral Montanheiro, T.L.; de Menezes, B.R.C.; Ribas, R.G.; Montagna, L.S.; Campos, T.M.B.; Schatkoski, V.M.; Righetti, V.A.N.; Passador, F.R.; Thim, G.P. Covalently γ-aminobutyric acid-functionalized carbon nanotubes: Improved compatibility with PHBV matrix. SN Appl. Sci. 2019, 1, 1177. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.-Y.; Qin, Z.-Y.; Sun, B.; Yang, X.-G.; Yao, J.-M. Reinforcement of transparent poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by incorporation of functionalized carbon nanotubes as a novel bionanocomposite for food packaging. Compos. Sci. Technol. 2014, 94, 96–104. [Google Scholar] [CrossRef]
- Montanheiro, T.L.A.; Montagna, L.S.; Machado, J.P.B.; Lemes, A.P. Covalent functionalization of MWCNT with PHBV chains: Evaluation of the functionalization and production of nanocomposites. Polym. Compos. 2019, 40, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Lai, M.; Li, J.; Yang, J.; Liu, J.; Tong, X.; Cheng, H. The morphology and thermal properties of multi-walled carbon nanotube and poly(hydroxybutyrate-co-hydroxyvalerate) composite. Polym. Int. 2004, 53, 1479–1484. [Google Scholar] [CrossRef]
- de Menezes, B.R.C.; Campos, T.M.B.; do Amaral Montanheiro, T.L.; Ribas, R.G.; de Simone Cividanes, L.; Thim, G.P. Non-Isothermal Crystallization Kinetic of Polyethylene/Carbon Nanotubes Nanocomposites Using an Isoconversional Method. J. Compos. Sci. 2019, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Qiu, Z. Nonisothermal Melt Crystallization and Subsequent Melting Behavior of Biodegradable Poly ( hydroxybutyrate )/ Multiwalled Carbon Nanotubes Nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2009, 47, 2238–2246. [Google Scholar] [CrossRef]
- Reinsch, V.E.; Kelley, S.S. Crystallization of Poly (hydroxybutyrate-co-hydroxyvalerate) in Wood Fiber-Reinforced Composites. J. Appl. Polym. Sci. 1997, 64, 1785–1796. [Google Scholar] [CrossRef]
- Ou, R.; Guo, C.; Xie, Y.; Wang, Q. Non-isothermal crystallization kinetics of kevlar fiber-reinforced wood flour/hdpe composites. BioResources 2011, 6, 4547–4565. [Google Scholar]
- López-Fonseca, R.; Landa, I.; Gutiérrez-Ortiz, M.A.; González-Velasco, J.R. Nin-isothermal analysis of the kitetics of the combustion of carbonaceous materials. J. Therm. Anal. Calorim. 2005, 80, 65–69. [Google Scholar] [CrossRef]
- Khawam, A.; Flanagan, D.R. Role of isoconversional methods in varying activation energies of solid-state kinetics I. isothermal kinetic studies. Thermochim. Acta 2005, 429, 93–102. [Google Scholar] [CrossRef]
- Erceg, M.; Kovacic, T.; Perinovi, S. Kinetic analysis of the non-isothermal degradation of poly (3-hydroxybutyrate) nanocomposites. Thermochim. Acta 2008, 476, 44–50. [Google Scholar] [CrossRef]
- Jankovic, B.; Adnadevic, B.; Jovanovic, J. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: Thermogravimetric analysis. Thermochim. Acta 2007, 452, 106–115. [Google Scholar] [CrossRef]
- Azimi, H.R.; Rezaei, M.; Abbasi, F.; Charchi, A.; Bahluli, Y. Non-isothermal degradation kinetics of MMA-St copolymer and EPS lost foams. Thermochim. Acta 2008, 474, 72–77. [Google Scholar] [CrossRef]
- Koga, N. Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature. Thermochim. Acta 1995, 258, 145–159. [Google Scholar] [CrossRef]
- Málek, J.; Sesták, J.; Rouquerol, F.; Rouquerol, J.; Criado, J.M.; Ortega, A. Possibilities of two non-isothermal procedures (temperature- or rate-controlled) for kinetical studies. J. Therm. Anal. 1992, 38, 71–87. [Google Scholar] [CrossRef]
- Sestak, J.; Satava, V.; Wendlandt, W.W. The study of heterogeneous processes by thermal analysis. Thermochim. Acta 1973, 7, 333–556. [Google Scholar] [CrossRef]
- Guinesi, L.S.; Alessandra, L.R.; Henrique, L.; Mattoso, C.; Teixeira, E.D.M.; Antonio, A.; Curvelo, S. Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures. Thermochim. Acta 2006, 447, 190–196. [Google Scholar] [CrossRef]
- Doyle, C.D. Kinetic Analysis of Thermogravimetric Data. J. Appl. Ind. Sci. 1961, 5, 285–292. [Google Scholar] [CrossRef]
- Doyle, C.D. Estimating Isothermal Life from Thermogravimetric Data. J. Appl. Polym. Sci. 1962, 6, 639–642. [Google Scholar] [CrossRef]
- Zeman, S. Kinetic compensation effect and thermolysis mechanisms of organic polynitroso and polynitro compounds. Thermochim. Acta 1997, 290, 199–217. [Google Scholar] [CrossRef]
- Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, T. Non-isothermal kinetics and generalized time. Thermochim. Acta 1986, 100, 109–118. [Google Scholar] [CrossRef]
- Gotor, F.J.; Criado, J.M.; Malek, J.; Koga, N. Kinetic Analysis of Solid-State Reactions: The Universality of Master Plots for Analyzing Isothermal and Nonisothermal Experiments. J. Phys. Chem. A 2000, 104, 10777–10782. [Google Scholar] [CrossRef]
- Koga, N.; Malek, J. Accommodation of the actual solid-state process in the kinetic model function. Part 2. Applicability of the empirical kinetic model function to diffusion-controlled reactions. Thermochim. Acta 1996, 282–283, 69–80. [Google Scholar] [CrossRef]
- Deroiné, M.; Le Duigou, A.; Corre, Y.-M.; Le Gac, P.-Y.; Davies, P.; César, G.; Bruzaud, S. Seawater accelerated ageing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym. Degrad. Stab. 2014, 105, 237–247. [Google Scholar] [CrossRef] [Green Version]
- de Melo, C.C.N.; Beatrice, C.A.G.; Pessan, L.A.; de Oliveira, A.D.; Machado, F.M. Analysis of nonisothermal crystallization kinetics of graphene oxide—Reinforced polyamide 6 nanocomposites. Thermochim. Acta 2018, 667, 111–121. [Google Scholar] [CrossRef]
- Favaro, M.M.; Rego, B.T.; Branciforti, M.C.; Bretas, R.E.S. Study of the Quiescent and Shear-Induced Crystallization Kinetics of Intercalated PTT/MMT Nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 113–127. [Google Scholar] [CrossRef]
- Yu, H.-Y.; Yao, J.-M.; Qin, Z.-Y.; Liu, L.; Yang, X.-G. Comparison of covalent and noncovalent interactions of carbon nanotubes on the crystallization behavior and thermal properties of poly(3-hydroxybutyrate- co -3-hydroxyvalerate). J. Appl. Polym. Sci. 2013, 130, 4299–4307. [Google Scholar] [CrossRef]
- Amico, D.A.D.; Cyras, V.P.; Manfredi, L.B. Thermochimica Acta Non-isothermal crystallization kinetics from the melt of nanocomposites based on poly (3-hydroxybutyrate) and modi fi ed clays. Thermochim. Acta 2014, 594, 80–88. [Google Scholar]
- Zhang, H.; Yu, H.; Wang, C.; Yao, J. Effect of silver contents in cellulose nanocrystal / silver nanohybrids on PHBV crystallization and property improvements. Carbohydr. Polym. 2017, 173, 7–16. [Google Scholar] [CrossRef]
- Ambrosio-Martín, J.; Gorrasi, G.; Lopez-Rubio, A.; Fabra, M.J.; Mas, L.C.; Lõpez-Manchado, M.A.; Lagaron, J.M. On the use of ball milling to develop PHBV-graphene nanocomposites (I)—Morphology, thermal properties, and thermal stability. J. Appl. Polym. Sci. 2015, 132, 42101. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; McDonald, A.G. Thermophysical properties of bacterial poly(3-hydroxybutyrate): Characterized by TMA, DSC, and TMDSC. J. Appl. Polym. Sci. 2015, 132, 42412. [Google Scholar] [CrossRef]
- Yu, H.; Qin, Z.; Zhou, Z. Cellulose nanocrystals as green fillers to improve crystallization and hydrophilic property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Prog. Nat. Sci. Mater. Int. 2011, 21, 478–484. [Google Scholar] [CrossRef] [Green Version]
- Shan, G.-F.; Gong, X.; Chen, W.-P.; Chen, L.; Zhu, M.-F. Effect of multi-walled carbon nanotubes on crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Colloid Polym. Sci. 2011, 289, 1005–1014. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, M.; Chen, Y. Synthesis and characterization of multi-block copolymers containing poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] and poly(ethylene glycol). Polym. Int. 2010, 59, 842–850. [Google Scholar] [CrossRef]
- Mandelkern, L. Crystallization ofPolymers: Kinetics and Mechanisms, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Banks, W.; Gordon, M.; Sharples, A. The crystallization of polyethylene after partial melting. Polymer 1963, 4, 289–302. [Google Scholar] [CrossRef]
- Ten, E.; Jiang, L.; Wolcott, M.P. Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr. Polym. 2012, 90, 541–550. [Google Scholar] [CrossRef]
- Garcia-Garcia, D.; Ferri, J.M.; Boronat, T.; Lopez-Martinez, J.; Balart, R. Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polym. Bull. 2016, 73, 3333–3350. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Safont, E.L.; Arrillaga, A.; Anakabe, J.; Gamez-Perez, J.; Cabedo, L. PHBV/TPU/cellulose compounds for compostable injection molded parts with improved thermal and mechanical performance. J. Appl. Polym. Sci. 2019, 136, 47257. [Google Scholar] [CrossRef]
Model | Mechanism | f(α) |
---|---|---|
Šesták and Berggren (SB) | Autocatalytic, General Mechanism | |
Johnson-Mehl-Avrami (JMA) | Nucleation and Growth | |
Reaction Order (RO) | One-parameter model | |
Polany-Winger (R1) | Phase boundary-controlled reaction (one-dimensional) | |
Contracting cylinder (R2) | Phase boundary-controlled reaction (contracting area) | |
Contracting sphere (R3) | Phase boundary-controlled reaction (contracting volume) | |
Parabolic Law (D1) | Diffusion (one-dimensional) | |
Valenci (D2) | Diffusion (two-dimensional) | |
Jander (D3) | Diffusion (three-dimensional) | |
Brounshtein-Ginstling (D4) | Diffusion (four-dimensional) |
Samples | Cooling Rate (°C/min) | Ton (°C) | Tp (°C) | Xc (%) | Average Xc (%) |
---|---|---|---|---|---|
PHBV | 5 | 131 | 124 | 59 | 56 |
7 | 130 | 122 | 57 | ||
10 | 127 | 119 | 54 | ||
15 | 123 | 115 | 54 | ||
PHBV/CNT | 5 | 134 | 126 | 59 | 57 |
7 | 132 | 124 | 57 | ||
10 | 128 | 121 | 58 | ||
15 | 127 | 118 | 55 | ||
PHBV/CNT-Ox | 5 | 133 | 125 | 58 | 56 |
7 | 130 | 123 | 58 | ||
10 | 130 | 121 | 58 | ||
15 | 125 | 117 | 52 | ||
PHBV/CNT-GB | 5 | 132 | 125 | 58 | 59 |
7 | 130 | 123 | 60 | ||
10 | 127 | 120 | 56 | ||
15 | 125 | 117 | 60 |
α | PHBV | PHBV/CNT | PHBV/CNT-Ox | PHBV/CNT-GB | ||||
---|---|---|---|---|---|---|---|---|
Ea | lnA | Ea | lnA | Ea | lnA | Ea | lnA | |
0.05 | −204.9 | −6.6 | −197.7 | −6.6 | −199.3 | −6.6 | −224.2 | −6.5 |
0.10 | −193.5 | −6.6 | −193.2 | −6.7 | −198.0 | −6.6 | −213.3 | −6.6 |
0.15 | −187.8 | −6.7 | −190.3 | −6.7 | −195.9 | −6.6 | −207.7 | −6.6 |
0.20 | −183.8 | −6.7 | −188.1 | −6.7 | −193.9 | −6.6 | −203.8 | −6.6 |
0.25 | −180.8 | −6.7 | −186.3 | −6.7 | −192.0 | −6.7 | −200.7 | −6.6 |
0.30 | −178.2 | −6.7 | −184.7 | −6.7 | −190.2 | −6.7 | −198.1 | −6.6 |
0.35 | −175.9 | −6.7 | −183.2 | −6.7 | −188.6 | −6.7 | −195.8 | −6.6 |
0.40 | −173.9 | −6.7 | −181.9 | −6.7 | −187.0 | −6.7 | −193.7 | −6.6 |
0.45 | −172.0 | −6.8 | −180.7 | −6.7 | −185.4 | −6.7 | −191.8 | −6.7 |
0.50 | −170.2 | −6.8 | −179.5 | −6.7 | −183.8 | −6.7 | −189.9 | −6.7 |
0.55 | −168.4 | −6.8 | −178.3 | −6.7 | −182.2 | −6.7 | −188.1 | −6.7 |
0.60 | −166.7 | −6.8 | −177.1 | −6.7 | −180.6 | −6.7 | −186.3 | −6.7 |
0.65 | −165.0 | −6.8 | −176.0 | −6.7 | −178.9 | −6.7 | −184.5 | −6.7 |
0.70 | −163.2 | −6.8 | −174.9 | −6.7 | −177.2 | −6.7 | −182.6 | −6.7 |
0.75 | −161.4 | −6.8 | −173.8 | −6.8 | −175.3 | −6.7 | −180.7 | −6.7 |
0.80 | −159.5 | −6.8 | −172.8 | −6.8 | −173.2 | −6.8 | −178.8 | −6.7 |
0.85 | −157.6 | −6.8 | −172.2 | −6.8 | −170.9 | −6.8 | −176.9 | −6.7 |
0.90 | −156.2 | −6.8 | −173.5 | −6.8 | −168.7 | −6.8 | −175.9 | −6.7 |
0.95 | −163.2 | −6.8 | −199.0 | −6.6 | −166.4 | −6.8 | −186.0 | −6.7 |
Average | −171.0 ± 10.7 | −6.80 ± 0.06 | −181.4 ± 7.6 | −6.70 ± 0.04 | −182.7 ± 9.5 | −6.70 ± 0.05 | −190.7 ± 10.8 | −6.70 ± 0.05 |
Sample | m | n | A | R2 |
---|---|---|---|---|
PHBV | 1.1 | 1.2 | 5.0 | 0.992 |
PHBV/CNT | 1.3 | 1.6 | 7.8 | 0.992 |
PHBV/CNT-Ox | 1.0 | 1.3 | 4.9 | 0.997 |
PHBV/CNT-GB | 0.8 | 1.1 | 4.0 | 0.995 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montanheiro, T.L.d.A.; de Menezes, B.R.C.; Montagna, L.S.; Beatrice, C.A.G.; Marini, J.; Lemes, A.P.; Thim, G.P. Non-Isothermal Crystallization Kinetics of Injection Grade PHBV and PHBV/Carbon Nanotubes Nanocomposites Using Isoconversional Method. J. Compos. Sci. 2020, 4, 52. https://doi.org/10.3390/jcs4020052
Montanheiro TLdA, de Menezes BRC, Montagna LS, Beatrice CAG, Marini J, Lemes AP, Thim GP. Non-Isothermal Crystallization Kinetics of Injection Grade PHBV and PHBV/Carbon Nanotubes Nanocomposites Using Isoconversional Method. Journal of Composites Science. 2020; 4(2):52. https://doi.org/10.3390/jcs4020052
Chicago/Turabian StyleMontanheiro, Thaís Larissa do Amaral, Beatriz Rossi Canuto de Menezes, Larissa Stieven Montagna, Cesar Augusto Gonçalves Beatrice, Juliano Marini, Ana Paula Lemes, and Gilmar Patrocínio Thim. 2020. "Non-Isothermal Crystallization Kinetics of Injection Grade PHBV and PHBV/Carbon Nanotubes Nanocomposites Using Isoconversional Method" Journal of Composites Science 4, no. 2: 52. https://doi.org/10.3390/jcs4020052
APA StyleMontanheiro, T. L. d. A., de Menezes, B. R. C., Montagna, L. S., Beatrice, C. A. G., Marini, J., Lemes, A. P., & Thim, G. P. (2020). Non-Isothermal Crystallization Kinetics of Injection Grade PHBV and PHBV/Carbon Nanotubes Nanocomposites Using Isoconversional Method. Journal of Composites Science, 4(2), 52. https://doi.org/10.3390/jcs4020052