Numerical and Experimental Evaluation of Mechanical and Ring Stiffness Properties of Preconditioning Underground Glass Fiber Composite Pipes
Abstract
:1. Introduction
2. Experimental Work
2.1. Materials and Methods
2.2. Preconditioning Procedures
2.3. Mechanical Testing
2.4. Fracture Toughness Test
2.5. Finite Element Method of Compression Stress (Stiffness Ring of Cylinder Test)
3. Results
3.1. Mechanical Properties
3.2. Charpy Impact Test
3.3. Ring Stiffness Characteristic
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fukushima, K.; Cai, H.; Nakada, M.; Miyano, Y. Determination of time-temperature shift factor for long-term life prediction of polymer composites. In Proceedings of the ICCM-17, 17th International Conference on Composite Materials, Edinburgh, UK, 27–31 July 2009. [Google Scholar]
- Plota, A.; Masek, A. Lifetime Prediction Methods for Degradable Polymeric Materials—A Short Review. Materials 2020, 13, 4507. [Google Scholar] [CrossRef]
- Julius, M.J. Time, Temperature and Frequency Viscoelastic Behavior of Commercial Polymers; West Virginia University: Morgantown, WV, USA, 2003. [Google Scholar]
- Wang, J.Z.; Parvatareddy, H.; Chang, T.; Iyengar, N.; Dillard, D.A.; Reifsnider, K.L. Physical aging behavior of high-performance composites. Compos. Sci. Technol. 1995, 54, 405–415. [Google Scholar] [CrossRef]
- Yao, J.; Ziegmann, G. Equivalence of moisture and temperature in accelerated test method and its application in prediction of long-term properties of glass-fiber reinforced epoxy pipe specimen. Polym. Test. 2006, 25, 149–157. [Google Scholar] [CrossRef]
- Barbero, E.J.; Julius, M.J. Time-temperature-age viscoelastic behavior of commercial polymer blends and felt filled polymers. Mech. Adv. Mater. Struct. 2004, 11, 287–300. [Google Scholar] [CrossRef]
- Feng, C.-W.; Keong, C.-W.; Hsueh, Y.-P.; Wang, Y.-Y.; Sue, H.-J. Modeling of long-term creep behavior of structural epoxy adhesives. Int. J. Adhes. Adhes. 2005, 25, 427–436. [Google Scholar] [CrossRef]
- Chen, M. Accelerated Viscoelastic Characterization of E-Glass/Epoxy Composite. Ph.D. Thesis, Northwestern University, Evanston, IL, USA, 1991. [Google Scholar]
- Goertzen, W.K.; Kessler, M. Creep behavior of carbon fiber/epoxy matrix composites. Mater. Sci. Eng. A 2006, 421, 217–225. [Google Scholar] [CrossRef]
- Miyano, Y.; Nakada, M.; Sekine, N. Accelerated testing for long-term durability of FRP laminates for marine use. J. Compos. Mater. 2005, 39, 5–20. [Google Scholar] [CrossRef]
- Farshad, M.; Necola, A. Effect of aqueous environment on the long-term behavior of glass fiber-reinforced plastic pipes. Polym. Test. 2004, 23, 163–167. [Google Scholar] [CrossRef]
- Nishizaki, I.; Meiarashi, S. Long-term deterioration of GFRP in water and moist environment. J. Compos. Constr. 2002, 6, 21–27. [Google Scholar] [CrossRef]
- Bergman, G. Managing corrosion on plastics-an analysis of experience from industrial applications. In Proceedings of the Corrosion-National Association of Corrosion Engineers Annual Conference, NACE, Orlando, FL, USA, 26–31 March 2000. [Google Scholar]
- Hojo, H.; Tsuda, K.; Kubouchi, M.; Kim, D.-S. Corrosion of plastics and composites in chemical environments. Met. Mater. 1998, 4, 1191–1197. [Google Scholar] [CrossRef]
- Farshad, M.; Necola, A. Strain corrosion of glass fibre-reinforced plastics pipes. Polym. Test. 2004, 23, 517–521. [Google Scholar] [CrossRef]
- Stoia, D.I.; Marsavina, L.; Linul, E. Mode I Fracture Toughness of Polyamide and Alumide Samples obtained by Selective Laser Sintering Additive Process. Polymers 2020, 12, 640. [Google Scholar] [CrossRef] [Green Version]
- Günöz, A.; Kepir, Y.; Memduh, K. The investigation of hardness and density properties of GFRP composite pipes under seawater conditions. Turk. J. Eng. 2022, 6, 34–39. [Google Scholar]
- Shi, H.; An, Z.; Gao, R. Simulation of Mechanical Behavior and Structural Analysis of Glass Fiber Reinforced Mortar Pipes. Rev. Romana Mater. 2020, 50, 198–204. [Google Scholar]
- Srinivasan, T.; Suresh, G.; Ramu, P.; Vignesh, R.; Vijay Harshan, A.; Vignesh, K.P. Effect of hygrothermal ageing on the compressive behavior of glass fiber reinforced IPN composite pipes. Mater. Today Proc. 2020, 45, 1354–1359. [Google Scholar] [CrossRef]
- Abdellah, M.Y.; Hassan, M.K.; Alsoufi, M.S. Fracture and Mechanical Characteristics Degradation of Glass Fiber Reinforced Petroleum epoxy Pipes. J. Manuf. Sci. Prod. 2016, 16, 33–40. [Google Scholar] [CrossRef]
- Seleem, A.-E.H.A. Failure and Corrosion Analysis of Composite Glass Fiber Reinforced Pipe Lines, in Mechaincal Engineering Department. Ph.D. Thesis, South Valley University, Qena, Egypt, 2015. [Google Scholar]
- Abdellah, M.Y. Delamination Modeling of Double Cantilever Beam of Unidirectional Composite Laminates. J. Fail. Anal. Prev. 2017, 17, 1011–1018. [Google Scholar] [CrossRef]
- Hassan, M.K.; Abdellah, M.Y.; Azabi, S.K.; Marzouk, W.W. Fracture Toughness of a Novel GLARE Composite Material. Int. J. Eng. Technol. 2015, 15. [Google Scholar]
- Faria, H.Q.D. Failure Analysis of GRP Pipes under Compressive Ring Loads. Master’s Thesis, Universidade do Porto, Porto, Portugal, 2005. [Google Scholar]
- Standard, A. D3171-99. Standard Test Methods for Constituent Content of Composite Materials; ASTM International: West Conshohocken, PA, USA, 1999. [Google Scholar]
- Abdellah, M.Y.; Alfattani, R.; Alnaser, I.A.; Abdel-Jaber, G.T. Stress Distribution and Fracture Toughness of Underground Reinforced Plastic Pipe Composite. Polymers 2021, 13, 2194. [Google Scholar] [CrossRef] [PubMed]
- ASTM Standards. ASTM D3039/D3039M-17, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials; ASTM International: West Conshohocken, PA, USA, 1995; pp. 99–109. [Google Scholar]
- ASTM Standards. D3410/D3410M-03. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- 100kN Computerized Universal Testing Machine. Available online: http://www.victorytest.com/products/wdw-50100-computerized-electromechanical-universal-testing-machine/ (accessed on 8 June 2020).
- Anderson, T.L.; McHenry, H.I.; Dawes, M.G. Elastic-Plastic Fracture Toughness Tests with Single-Edge Notched Bend Specimens, in Elastic-Plastic Fracture Test Methods: The User’s Experience; ASTM International: West Conshohocken, PA, USA, 1985. [Google Scholar]
- ASTM International. D5045-14. Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials, Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2014; Volume 8. [Google Scholar]
- Chen, Z.; Adams, R.; da Silva, L.F. Fracture toughness of bulk adhesives in mode I and mode III and curing effect. Int. J. Fract. 2011, 167, 221–234. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics. ASTM D6110-10; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Belytschko, T.; Black, T. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 1999, 45, 601–620. [Google Scholar] [CrossRef]
- Melenk, J.M.; Babuška, I. The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 1996, 139, 289–314. [Google Scholar] [CrossRef] [Green Version]
- Datta, D. Introduction to eXtended Finite Element (XFEM) Method. arXiv 2013, arXiv:1308.5208. [Google Scholar]
- Montasser Dewidar, N.S.K.; Mohammed, Y.; Abdellah Ayman, M.M. Finite element modeling of mechanical properties of titanium foam and dental application. In Proceedings of the Third International Conference on Energy Engineering (ICEE), Aswan, Egypt, 28–30 December 2015. [Google Scholar]
- Khashaba, U. Tensile and flexural properties of randomly oriented gfrp composites. In 1st International Conference on Mechanical Engineering Advanced Technology for Industrial Production; Assiut University: Assiut, Egypt, 1994; Volume 1, pp. 131–143. [Google Scholar]
- Berbinau, P.; Filiou, C.; Soutis, C. Stress and failure analysis of composite laminates with an inclusion under multiaxial compression-tension loading. Appl. Compos. Mater. 2001, 8, 307–326. [Google Scholar] [CrossRef]
- Soutis, C.; Curtis, P. A method for predicting the fracture toughness of CFRP laminates failing by fibre microbuckling. Compos. Part A Appl. Sci. Manuf. 2000, 31, 733–740. [Google Scholar] [CrossRef]
- Abdellah, M.Y. Comparative Study on Prediction of Fracture Toughness of CFRP Laminates from Size Effect Law of Open Hole Specimen Using Cohesive Zone Model. Eng. Fract. Mech. 2018, 191, 277–285. [Google Scholar] [CrossRef]
Constituents | Average % | Viscosity/cp.25 °C | Thermal Deformation Temperature/°C | Tensile Strength /MPa | Specific Density (g/cm3) |
---|---|---|---|---|---|
Thermosetting unsaturated polyester (Matrix) | 30.2% | 400 | 70 | 65 | 1.12 |
Roving | 11.8 | ----------- | ----------- | 3100–3400 | 2.5 |
matt | 13.5 | ------------ | ------------ | ||
sand | 44.5 | ------------- | ------------- | ---------- | 2.66 |
Properties | E1 (GPa) | E2 (GPa) | ν12 | G12 (GPa) | G13 (GPa) | G23 (GPa) |
---|---|---|---|---|---|---|
value | 100 | 9 | 0.3 | 3.2 | 3.2 | 4 |
Impact Toughness of Specimen | Unit (Joule) |
---|---|
Before immersion in wastewater | 8.5 |
After immersion in wastewater | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, M.K.; Mohamed, A.F.; Khalil, K.A.; Abdellah, M.Y. Numerical and Experimental Evaluation of Mechanical and Ring Stiffness Properties of Preconditioning Underground Glass Fiber Composite Pipes. J. Compos. Sci. 2021, 5, 264. https://doi.org/10.3390/jcs5100264
Hassan MK, Mohamed AF, Khalil KA, Abdellah MY. Numerical and Experimental Evaluation of Mechanical and Ring Stiffness Properties of Preconditioning Underground Glass Fiber Composite Pipes. Journal of Composites Science. 2021; 5(10):264. https://doi.org/10.3390/jcs5100264
Chicago/Turabian StyleHassan, Mohamed K., Ahmed F. Mohamed, Khalil Abdelrazek Khalil, and Mohammed Y. Abdellah. 2021. "Numerical and Experimental Evaluation of Mechanical and Ring Stiffness Properties of Preconditioning Underground Glass Fiber Composite Pipes" Journal of Composites Science 5, no. 10: 264. https://doi.org/10.3390/jcs5100264
APA StyleHassan, M. K., Mohamed, A. F., Khalil, K. A., & Abdellah, M. Y. (2021). Numerical and Experimental Evaluation of Mechanical and Ring Stiffness Properties of Preconditioning Underground Glass Fiber Composite Pipes. Journal of Composites Science, 5(10), 264. https://doi.org/10.3390/jcs5100264