Studies on the Geometrical Design of Spider Webs for Reinforced Composite Structures
Abstract
:1. Introduction
- (1)
- Pre-processing: Importing the image via image acquisition tools with excellent pixel size,
- (2)
- Enhancement: Analyzing and manipulating the picture, and
- (3)
- Output reporting: imaging display attributes or features of information extraction.
2. State-of-the-Art on Spider Web Construction and Property
3. Methods
3.1. Image Capture
3.2. Data Extraction of Opening and Mesh Element Size of Spider Web
- (1)
- Collecting real pictures for orb webs as a study sample.
- (2)
- Developing an algorithm/use a pre-made one that helps measure the required geometry.
- (3)
- Data manipulation (loading pictures, calibrating the algorithm working systems for equating the size of pixels to the linear distance or measurement (distance and angle in cm/mm)).
- (4)
- Conducting measurements of the theta and p2p distance with the developed MATLAB algorithm.
- (5)
- Generating reports for mean, mode, variance, min and maximum.
- (6)
- Reporting the extracted features.
3.3. Methods for Coding the MATLAB Measurement Algorithm
- Step 1:
- Calculation of the actual dimensions to pixel ratio by measuring the background distance and the pixel dimensions.
- Step 2:
- Writing a code using MATLAB that can measure the distance between two points on an image using pixel distances. Every point in an image is represented by a color value at that row and column. Hence, to measure the distance between the two points, it just needs to record the row and column position of the two points and calculate the Euclidean distance between them. This will give the distance between the two points in pixels and the angle between two lines will be calculated geometrically in the same way explained for linear measurement.
- Step 3:
- The pixel distance was converted into a actual measurement by using the ratio calculated in Step 1.
4. Discussion of Results
4.1. Methods for Extraction of Spider Web Radials Orientation
4.2. Extraction of Spider Web Node to Node Distance by Element-Wise Measurement
- If skewness is <−1 or >1, the distribution is highly skewed,
- If skewness is between −1 and −0.5 or between 0.5 and 1, the distribution is moderately skewed and
- If skewness is between −0.5 and 0.5, the distribution is approximately symmetric.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eisoldt, L.; Smith, A.; Scheibel, T. Decoding the secrets of spider silk. Mater. Today 2011, 14, 80–86. [Google Scholar] [CrossRef]
- Hesselberg, T.; Vollrath, F. The mechanical properties of the non-sticky spiral in Nephila orb webs (Araneae, Nephilidae). J. Exp. Biol. 2012, 215, 3362–3369. [Google Scholar] [CrossRef] [Green Version]
- Cranford, S.W.; Tarakanova, A.; Pugno, N.M.; Buehler, M.J. Nonlinear material behaviour of spider silk yields robust webs. Nat. Cell Biol. 2012, 482, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Su, I.; Qin, Z.; Saraceno, T.; Krell, A.; Mühlethasler, R.; Bisshop, A.; Buehler, M.J. Imaging and analysis of a three- dimensional spider web architecture. J. R. Soc. Interface 2018, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guo, L.; Yang, S. Three-dimensional spider-web architecture assembled from Na2Ti3O7 nanotubes as a high-performance anode for a sodium-ion battery. Chem. Commun. 2014, 50, 14029–14032. [Google Scholar] [CrossRef] [PubMed]
- Su, I.; Buehler, M. Dynamic mechanics. Nat. Mater. 2016, 15, 1054–1055. [Google Scholar] [CrossRef]
- Ticay-Rivas, J.R.; del Pozo-Baños, M.; Gutiérrez-Ramos, M.A.; Eberhard, W.G.; Travieso, C.M.; Jesús, A.B. Image Processing for Spider Classification. In Biodiversity Conservation and Utilization in a Diverse World; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Su, I.; Buehler, M.J. Nanomechanics of silk: The fundamentals of a strong, tough and versatile material. Nanotechnololgy 2016, 27, 1–15. [Google Scholar] [CrossRef]
- Qin, Z.; Compton, B.G.; Lewis, J.A.; Buehler, M.J. Structural optimization of 3D-printed synthetic spider webs for high strength. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmer, A.M.T.; Blackledge, T.A.; Madin, J.S.; Herberstein, M.E. High-performance spider webs: Integrating biomechanics, ecology and behaviour. J. R. Soc. Interface 2011, 8, 457–471. [Google Scholar] [CrossRef]
- Blackledge, T.A.; Scharff, N.; Coddington, J.A.; Szu, T. Reconstructing web evolution and spider diversification in the molecular era. Proc. Natl. Acad. Sci. USA 2009, 106, 5229–5234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M. Condition-dependent spider web architecture in the western black widow. Latrodectus Hesperus. Anim. Behav. 2007, 73, 855–864. [Google Scholar]
- Madrigal-Brenes, R.; Barrantes, G. Construction and function of the web of Tidarren sisyphoides (Araneae: Theridiidae). J. Archeol. 2009, 37, 306–311. [Google Scholar] [CrossRef]
- Saint Martin, J.-P.; Saint Saint, S.; Bolte, S.; Nèraudeau, D. Spider web in Late Cretaceous French amber (Vendée): The contribution of 3D image microscopy. C. R. Palevol. 2014, 13, 463–472. [Google Scholar] [CrossRef]
- Debelee, T.G.; Kebede, S.R.; Schwenker, F.; Shewarega, Z.M. Deep learning in selected cancers’ image analysis—A survey. J. Imaging 2020, 6, 121. [Google Scholar] [CrossRef]
- Jiang, Y.; Nayeb-hashemi, H. Dynamic response of spider orb webs subject to prey impact. Int. J. Mech. Sci. 2020, 186, 105899. [Google Scholar] [CrossRef]
- Ko, F.K.; Jovicic, J. Modeling of mechanical properties and structural design of spider web. Biomacromolecules 2004, 5, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Yang, I.-Y.; Im, K.-H.; Hsu, D.K.; Dayal, V.; Barnard, D.; Kim, J.-H.; Cha, C.-S.; Cho, Y.-T.; Kim, D.-J. Feasibility on fiber orientation detection of unidirectional CFRP composite laminates using one-sided pitch—Catch ultrasonic technique. Compos. Sci. Technol. 2009, 69, 2042–2047. [Google Scholar] [CrossRef]
- Köbler, J.; Schneider, M.; Ospald, F.; Andrä, H.; Müller, R. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts. Comput. Mech. 2018, 61, 729–750. [Google Scholar] [CrossRef] [Green Version]
- Moakher, M.; Basser, P.J. Fiber orientation distribution functions and orientation tensors for different material symmetries. In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data; Mathematics and Visualization; Hotz, I., Schultz, T., Eds.; Springer Switzerland: Gewerbestrasse, Switzerland, 2015; pp. 37–71. [Google Scholar]
- Prabhakar, M.M.; Rajini, N.; Ayrilmis, N.; Mayandi, K.; Siengchin, S.; Senthilkumar, K.; Karthikeyan, S.; Ismail, S.O. An overview of burst, buckling, durability and corrosion analysis of lightweight FRP composite pipes and their applicability. Compos. Struct. 2019, 230, 111419. [Google Scholar] [CrossRef]
- Almeida, J.H.S., Jr.; Bittrich, L.; Jansen, E.; Tita, V.; Spickenheuer, A. Buckling optimization of composite cylinders for axial compression: A design methodology considering a variable-axial fiber layout. Compos. Struct. 2019, 222, 110928. [Google Scholar] [CrossRef]
- Wang, Z.; Almeida, J.H.S., Jr.; St-Pierre, L.; Wang, Z.; Castro, S.G.P. Reliability-based buckling optimization with an accelerated Kriging meta model for filament-wound variable angle tow composite cylinders. Compos. Struct. 2020, 254, 112821. [Google Scholar] [CrossRef]
- Almeida, J.H.S., Jr.; Bittrich, L.; Spickenheuer, A. Improving the open-hole tension characteristics with variable-axial composite laminates: Optimization, progressive damage modeling and experimental observations. Compos. Sci. Technol. 2020, 185, 107889. [Google Scholar] [CrossRef]
- Bono, R.; Arnau, J.; Alarcon, R.; Blanca, M.J. Bias, precision, and accuracy of skewness and kurtosis estimators for frequently used continuous distributions. Symmetry 2020, 12, 19. [Google Scholar] [CrossRef] [Green Version]
- Kollo, T. Multivariate skewness and kurtosis measures with an application in ICA. J. Multivar. Anal. 2008, 99, 2328–2338. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Gewali, L.P.; Khatiwada, J. New measures of skewness of a probability distribution. Open J. Stat. 2019, 9, 601–621. [Google Scholar] [CrossRef] [Green Version]
Extracted Data for the Opening Angle of Spider Web Radials from the Sampled Image | |||||
---|---|---|---|---|---|
Statistics Descriptive | Sample SP1 | Sample SP2 | Sample SP3 | Sample SP4 | Sample SP5 |
θ1–26 radials | θ1–31 radials | θ1–25 radials | θ1–28 radials | θ1–32 radials | |
Mean | 13.70 | 11.87 | 14.52 | 12.47 | 11.13 |
Standard Error | 0.87 | 0.78 | 1.89 | 0.92 | 0.77 |
Median | 12.72 | 10.69 | 12.57 | 11.19 | 10.35 |
Mode | 11.04 | 9.33 | No | No | 11.20 |
Standard Deviation | 4.46 | 4.37 | 9.44 | 4.85 | 4.35 |
Sample Variance | 19.90 | 19.09 | 89.09 | 23.55 | 18.91 |
Kurtosis | −0.93 | 5.17 | 9.59 | 1.82 | 1.89 |
Skewness | 0.29 | 1.86 | 2.81 | 1.22 | 1.10 |
Range | 15.34 | 22.67 | 45.29 | 20.97 | 20.07 |
Minimum theta | 7.31 | 5.21 | 6.01 | 6.29 | 4.87 |
Maximum theta | 22.65 | 27.88 | 51.30 | 27.26 | 24.94 |
Sum of angle for web | 356.24 | 368.04 | 362.91 | 349.06 | 356.07 |
Qty of spirals in web | 26.00 | 31.00 | 25.00 | 28.00 | 32.00 |
Descriptive Statistics | Node to Node Distance Extracted Data for Sample SP1 | |||||||
---|---|---|---|---|---|---|---|---|
Spiral 1 | Spiral 2 | Spiral 3 | Spiral 4 | Spiral 5 | Spiral 6 | Spiral 7 | ||
Mean | 14.88 | 3.97 | 3.36 | 2.55 | 3 | 2.94 | 2.64 | |
Standard Error | 1.14 | 0.31 | 0.22 | 0.25 | 0.24 | 0.24 | 0.18 | |
Median | 13.13 | 3.76 | 3.65 | 2.32 | 3.12 | 2.9 | 2.61 | |
Standard Dev. | 5.7 | 1.59 | 1.14 | 1.27 | 1.21 | 1.22 | 0.94 | |
Sample Variance | 32.59 | 2.55 | 1.3 | 1.62 | 1.48 | 1.49 | 0.89 | |
Kurtosis | −1.18 | 7.23 | 4.81 | 6.62 | 2.17 | 3.35 | 1.09 | |
Skewness | 0.37 | 1.31 | −2.12 | 1.73 | −0.83 | 0.53 | −0.5 | |
Range | 18.24 | 9.62 | 4.61 | 7.14 | 5.72 | 6.6 | 4.21 | |
Maximum | 24.21 | 9.62 | 4.61 | 7.14 | 5.72 | 6.6 | 4.21 | |
Sum off used yarn | 372.15 | 99.33 | 84.06 | 63.93 | 75.18 | 73.66 | 66 | |
No. of Elements | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
Statistics Descriptive | Spiral 1 | Spiral 2 | Spiral 3 | Spiral 4 | Spiral 5 | Spiral 7 | Spiral 7 |
---|---|---|---|---|---|---|---|
Mean | 15.66 | 5.59 | 7.02 | 7.62 | 7.76 | 7.84 | 8.07 |
Standard Error | 0.66 | 0.26 | 0.34 | 0.30 | 0.30 | 0.44 | 0.54 |
Median | 15.17 | 5.33 | 6.62 | 7.32 | 7.30 | 8.10 | 7.60 |
Mode | NA | NA | NA | NA | 7.30 | 5.00 | 5.30 |
Standard Deviation | 3.32 | 1.31 | 1.70 | 1.48 | 1.52 | 2.22 | 2.70 |
Sample Variance | 11.04 | 1.73 | 2.89 | 2.18 | 2.32 | 4.95 | 7.32 |
Kurtosis | −0.32 | 0.55 | −0.35 | 1.60 | −0.59 | −0.71 | −0.88 |
Skewness | −0.09 | 0.87 | 0.73 | 0.97 | 0.55 | 0.41 | 0.42 |
Range | 12.90 | 5.42 | 5.91 | 6.85 | 5.60 | 7.35 | 9.20 |
Minimum distance | 9.22 | 3.67 | 4.71 | 5.04 | 5.20 | 4.90 | 3.90 |
Maximum distance | 22.12 | 9.09 | 10.62 | 11.89 | 10.80 | 12.25 | 13.10 |
Sum of yam used | 391.52 | 139.75 | 175.56 | 190.45 | 194.00 | 195.94 | 201.80 |
No. of elements | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regassa, Y.; Lemu, H.G.; Sirabizuh, B.; Rahimeto, S. Studies on the Geometrical Design of Spider Webs for Reinforced Composite Structures. J. Compos. Sci. 2021, 5, 57. https://doi.org/10.3390/jcs5020057
Regassa Y, Lemu HG, Sirabizuh B, Rahimeto S. Studies on the Geometrical Design of Spider Webs for Reinforced Composite Structures. Journal of Composites Science. 2021; 5(2):57. https://doi.org/10.3390/jcs5020057
Chicago/Turabian StyleRegassa, Yohannes, Hirpa G. Lemu, Belete Sirabizuh, and Samuel Rahimeto. 2021. "Studies on the Geometrical Design of Spider Webs for Reinforced Composite Structures" Journal of Composites Science 5, no. 2: 57. https://doi.org/10.3390/jcs5020057
APA StyleRegassa, Y., Lemu, H. G., Sirabizuh, B., & Rahimeto, S. (2021). Studies on the Geometrical Design of Spider Webs for Reinforced Composite Structures. Journal of Composites Science, 5(2), 57. https://doi.org/10.3390/jcs5020057