Development of Ultra-Lightweight and High Strength Engineered Cementitious Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Proportions and Specimen Preparation
2.3. Tests
2.3.1. Density
2.3.2. Compressive Strength Test
2.3.3. Direct Tensile Test
2.3.4. Thermal Conductivity
2.3.5. Water Absorption Rate
2.4. Micromechanical Properties Test
2.4.1. Single Fiber Pull-Out Test
2.4.2. Wedge Split Test
2.5. Fiber-Bridging Analysis
3. Results
3.1. Density and Compressive Strength
3.2. Tensile Strain-Hardening Behavior
3.3. Thermal Conductivity
3.4. Water Absorption Rate
3.5. Fiber/Matrix Interface Properites
3.6. Matrix Fracture Toughness
3.7. Fiber-Bridging Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Patel, S.K.; Majhi, R.K.; Satpathy, H.P.; Nayak, A.N. Durability and microstructural properties of lightweight concrete manufactured with fly ash cenosphere and sintered fly ash aggregate. Constr. Build. Mater. 2019, 226, 579–590. [Google Scholar] [CrossRef]
- Hanif, A.; Lu, Z.; Cheng, Y.; Diao, S.; Li, Z. Effects of Different Lightweight Functional Fillers for Use in Cementitious Composites. Int. J. Concr. Struct. Mater. 2017, 1191, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Youm, K.; Moon, J.; Cho, J.; Kim, J. Experimental study on strength and durability of lightweight aggregate concrete containing silica fume. Constr. Build. Mater. 2016, 114, 517–527. [Google Scholar] [CrossRef]
- Maaloufa, Y.; Mounir, S.; Khabbazi, A.; Kettar, J.; Khaldoun, A. Thermal characterization of materials based on clay and granular, cork or expanded perlite. Energy Procedia 2015, 74, 1150–1161. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, N.; Ramamurthy, K. Structure and properties of aerated concrete, a review. Cem. Concr. Compos. 2000, 22, 321–329. [Google Scholar] [CrossRef]
- Domagala, L. Modification of properties of structural lightweight concrete with steel fibers. J. Civ. Eng. Manag. 2011, 17, 36–44. [Google Scholar] [CrossRef]
- Balendran, R.V.; Zhou, F.P.; Nadeem, A.; Leung, A.Y.T. Influence of steel fibers on strength and ductility of normal and lightweight high strength concrete. Build. Environ. 2002, 37, 1361–1367. [Google Scholar] [CrossRef]
- Cui, H.Z.; Lo, T.Y.; Memon, S.A.; Xu, W. Effect of lightweight aggregates on the mechanical properties and brittleness of lightweight aggregate concrete. Constr. Build. Mater. 2012, 35, 149–158. [Google Scholar] [CrossRef]
- Zhu, H.; Wan, K.T.; Satekenova, E.; Zhang, D.; Leung, C.K.Y.; Kim, J. Development of lightweight strain hardening cementitious composite for structural retrofit and energy efficiency improvement of unreinforced masonry housings. Constr. Build. Mater. 2018, 167, 791–812. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chia, K.; Liew, J.; Zhang, M. Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content. Cem. Concr. Compos. 2013, 43, 39–47. [Google Scholar] [CrossRef]
- Li, V.C.; Wu, H.; Chan, Y. Effect of plasma treatment of polyethylene fibers on interface and cementitious composite properties. J. Am. Ceram. Soc. 1996, 79, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Lepech, M.D.; Li, V.C. Large-scale processing of engineered cementitious composites. ACI Mater. J. 2008, 105, 358–366. [Google Scholar]
- Yang, E.; Yang, Y.; Li, V.C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness. ACI Mater. J. 2007, 104, 303–311. [Google Scholar]
- Li, L.; Cai, Z.; Yu, K.; Zhang, Y.X.; Ding, Y. Performance-based design of all-grade strain hardening cementitious composites with compressive strengths from 40 MPa to 120 MPa. Cem. Concr. Compos. 2019, 97, 202–217. [Google Scholar] [CrossRef]
- Zhou, J.; Qian, S.; Beltran, M.G.S.; Ye, G.; Breugel, K.; Li, V.C. Development of engineered cementitious composites with limestone powder and blast furnace slag. Mater. Struct. 2010, 43, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Jin, Q.; Li, V.C. Development of lightweight engineered cementitious composite for durability enhancement of tall concrete wind towers. Cem. Concr. Compos. 2019, 96, 87–94. [Google Scholar] [CrossRef]
- Wang, S.; Li, V.C. Lightweight engineered cementitious composites (ECC). In Proceedings of the 4th International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC 4), Ann Arbor, MI, USA, 16–18 June 2003; RILEM Publications: Paris, France, 2003; pp. 379–390. [Google Scholar]
- Huang, X.; Ranade, R.; Zhang, Q.; Ni, W.; Li, V.C. Mechanical and thermal properties of green lightweight engineered cementitious composites. Constr. Build. Mater. 2013, 48, 954–960. [Google Scholar] [CrossRef]
- Zhou, Y.; Xi, B.; Sui, L.; Zheng, S.; Xing, F.; Li, L. Development of high strain-hardening lightweight engineered cementitious composites: Design and performance. Cem. Concr. Compos. 2019, 104, 103370. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuvarai, A.; Di, J.; Qian, S. Matrix design of light weight, high strength, high ductility ECC. Constr. Build. Mater. 2019, 210, 188–197. [Google Scholar] [CrossRef]
- Papatzani, S.; Paine, K. A step by step methodology for building sustainable cementitious matrices. Appl. Sci. 2020, 10, 2955. [Google Scholar] [CrossRef]
- Papatzani, S.; Grammatikos, S.; Paine, K. Permeable nanomontmorillonite and fibre reinforced cementitious binders. Materials 2019, 12, 3245. [Google Scholar] [CrossRef] [Green Version]
- Piggott, M.R. The single-fibre pull-out method: Its advantages, interpretation and experimental realization. Compos. Interfaces 1993, 1, 211–223. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Ha, G.J.; Kim, Y.Y. Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag. Cem. Concr. Res. 2007, 37, 1096–1105. [Google Scholar] [CrossRef]
- Li, J.; Yang, E. Macroscopic and microstructural properties of engineered cementitious composites incorporating recycled concrete fines. Cem. Concr. Compos. 2017, 78, 33–42. [Google Scholar] [CrossRef]
- Li, J.; Weng, J.; Yang, E. Stochastic model of tensile behavior of strain hardening cementitious composites. Cem. Concr. Res. 2019, 124, 105856. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Radlinski, M.; Olek, J. Investigation into the synergistic effects in ternary cementitious systems containing portland cement, fly ash and silica fume. Cem. Cocnr. Compos. 2012, 34, 452–459. [Google Scholar] [CrossRef]
- Sutcu, M.; Ozturk, S.; Yalamac, E.; Gencel, O. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method. J. Environ. Manag. 2016, 181, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Dondi, M.; Mazzanti, F.; Principi, P.; Rainondo, M.; Zanarini, G. Thermal conductivity of clay bricks. J. Mater. Civ. Eng. 2004, 16, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Santos, P.; Martins, C.; Julio, E. Enhancement of the thermal performance of perforated clay brick walls through the addition of industrial nano-crystalline aluminium sludge. Constr. Build. Mater. 2015, 101, 227–238. [Google Scholar] [CrossRef]
- Ouellet, S.; Bussière, B.; Aubertin, M.; Benzaazoua, M. Microstructural evolution of cemented paste backfill: Mercury intrusion porosimetry test results. Cem. Concr. Res. 2007, 37, 1654–1665. [Google Scholar] [CrossRef]
- Liu, X.; Chia, K.; Zhang, M. Water absorption, permeability, and resistance to chloride-ion penetration of lightweight aggregate concrete. Constr. Build. Mater. 2011, 25, 335–343. [Google Scholar] [CrossRef]
- Bogas, J.A.; Gomes, M.G.; Real, S. Capillary absorption of structural lightweight aggregate concrete. Mater. Struct. 2015, 48, 2869–2883. [Google Scholar] [CrossRef]
- Yang, E.; Wang, S.; Yang, Y.; Li, V.C. Fiber bridging constitutive law of engineered cementitious composites. J. Adv. Cocnr. Tech. 2008, 6, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Li, V.C.; Wu, C.; Wang, S.X.; Ogawa, A.; Saito, T. Interface tailoring for strain-hardening polyvinyl alcohol -Engineered cementitious composite (PVA-ECC). ACI Mater. J. 2002, 99, 463–472. [Google Scholar]
- Wang, S.X.; Li, V.C. Engineered cementitious composites with high volume fly ash. ACI Mater. J. 2007, 104, 233–241. [Google Scholar]
- Li, V.C.; Maalej, M. Toughening in cement based composites, Part I: Cement, mortar and Concrete. Cem. Concr. Compos. 1996, 18, 223–237. [Google Scholar] [CrossRef]
- Kanda, T.; Li, V.C. A new micromechanics design theory for pseudo strain hardening cementitious composite. ASCE J. Eng. Mech. 1999, 125, 373–381. [Google Scholar] [CrossRef] [Green Version]
Oxides | Cement | FA | GGBS | SF | FAC |
---|---|---|---|---|---|
SiO2 | 22.9 | 58.6 | 34.8 | >85% | 58.0 |
Fe2O3 | 2.6 | 4.7 | - | - | 2.0–3.8 |
Al2O3 | 3.7 | 30.4 | - | - | 35.0 |
CaO | 65.9 | 1.2 | 37.7 | - | 1.1 |
TiO2 | - | 2.0 | - | - | 1.0 |
MgO | 1.2 | 0.8 | 10.9 | - | - |
LOI | - | 3.8 | 0.18 | <5% | 0.8 |
Bulk Density | True Density | Thermal Conductivity | Strength | Melting Point |
---|---|---|---|---|
g/cm3 | g/cm3 | W/mK | MPa | °C |
0.4 | 0.85 | 0.08 | 17.2 | 1600 |
Length mm | Diameter μm | Young’s Modulus | Elongation | Tensile Strength MPa | Density |
---|---|---|---|---|---|
GPa | % | g/cm3 | |||
12 | 39–44 | 42 | 7 | 1600 | 1.3 |
Mix ID | Cement | FA | GGBS | SF | FAC | Water | SP | Fiber |
---|---|---|---|---|---|---|---|---|
Control | 828 | - | - | 72 | 378 | 243 | 7 | 26 |
GGBS20 | 658 | - | 164 | 71 | 375 | 241 | 5 | 26 |
GGBS40 | 490 | - | 327 | 71 | 373 | 240 | 4 | 26 |
GGBS60 | 324 | - | 487 | 71 | 371 | 238 | 4 | 26 |
FA20 | 652 | 163 | - | 71 | 372 | 239 | 7 | 26 |
FA40 | 482 | 321 | - | 70 | 367 | 236 | 6 | 26 |
FA60 | 316 | 475 | - | 69 | 361 | 232 | 6 | 26 |
Mix ID | Initial Absorption Rate Si, mm/s1/2 | Secondary Absorption Rate Ss, mm/s1/2 |
---|---|---|
Control | 3.0 × 10−3 | 5.1 × 10−4 |
GGBS20 | 2.8 × 10−3 | 5.1 × 10−4 |
GGBS40 | 2.8 × 10−3 | 7.7 × 10−4 |
GGBS60 | 3.0 × 10−3 | 6.8 × 10−4 |
FA20 | 2.6 × 10−3 | 4.7 × 10−4 |
FA40 | 2.9 × 10−3 | 4.9 × 10−4 |
FA60 | 2.7 × 10−3 | 7.5 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Li, J.; Yang, E.-H. Development of Ultra-Lightweight and High Strength Engineered Cementitious Composites. J. Compos. Sci. 2021, 5, 113. https://doi.org/10.3390/jcs5040113
Chen Z, Li J, Yang E-H. Development of Ultra-Lightweight and High Strength Engineered Cementitious Composites. Journal of Composites Science. 2021; 5(4):113. https://doi.org/10.3390/jcs5040113
Chicago/Turabian StyleChen, Zhitao, Junxia Li, and En-Hua Yang. 2021. "Development of Ultra-Lightweight and High Strength Engineered Cementitious Composites" Journal of Composites Science 5, no. 4: 113. https://doi.org/10.3390/jcs5040113
APA StyleChen, Z., Li, J., & Yang, E.-H. (2021). Development of Ultra-Lightweight and High Strength Engineered Cementitious Composites. Journal of Composites Science, 5(4), 113. https://doi.org/10.3390/jcs5040113