The Direct Cause of Amplified Wettability: Roughness or Surface Chemistry?
Abstract
:1. Introduction
- (i)
- highlighting the effects of surface chemistry of the materials in elucidation of the differences between the wettability of smooth solid surface and fractal solid surfaces;
- (ii)
- evaluating the effectiveness of surface roughness in enhancing solid surface dimension as well as inherent surface chemistry.
2. Materials and Methods
2.1. Materials
2.2. Preparation of Glass Slides
2.3. Hydrophobisation Process
2.4. Surface Morphology
2.5. Contact Angle Measurement
3. Results
3.1. Surface Morphology of Glass Surfaces
3.2. Hydrophobisation Reactions of Glass Surfaces
3.3. Wettability of the Smooth and Rough Glass Surfaces
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shin, S.; Seo, J.; Han, H.; Kang, S.; Kim, H.; Lee, T. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications. Materials 2016, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Tian, Y.; Jiang, L. Bioinspired Super-Wettability from Fundamental Research to Practical Applications. Angew. Chem. Int. Ed. 2015, 54, 3387–3399. [Google Scholar] [CrossRef]
- Benedix, R.; Dehn, F.; Quaas, J.; Orgass, M. Application of titanium dioxide photocatalysis to create self-cleaning building materials. Lacer 2000, 5, 157–168. [Google Scholar]
- Echeverría, J.C.; Faustini, M.; Garrido, J.J. Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs. Sens. Actuators B Chem. 2016, 222, 1166–1174. [Google Scholar] [CrossRef]
- Chen, X.M.; Weibel, J.A.; Garimella, S.V. Exploiting microscale roughness on hierarchical superhydrophobic copper surfaces for enhanced dropwise condensation. Adv. Mater. Interfaces 2015, 2, 1400480. [Google Scholar] [CrossRef]
- Fan, X.; Niu, L.; Wu, Y.; Cheng, J.; Yang, Z. Assembly route toward raspberry-like composite particles and their controlled surface wettability through varied dual-size binary roughness. Appl. Surf. Sci. 2015, 332, 393–402. [Google Scholar] [CrossRef]
- Chan, K.K.; Guarini, K.W.; Jones, E.C.; Saavedra, A.F.; Shi, L.; Singh, D.V. Low Temperature Fusion Bonding with High Surface Energy Using a Wet Chemical Treatment. U.S. Patent 2006O194414A1, 1 July 2004. [Google Scholar]
- Decker, E.; Frank, B.; Suo, Y.; Garoff, S. Physics of contact angle measurement. Colloids Surf. A Physicochem. Eng. Asp. 1999, 156, 177–189. [Google Scholar] [CrossRef]
- Stalder, I.; Bilgram, J.H. The measurement of the solid–liquid surface free energy of xenon. J. Chem. Phys. 2003, 118, 7981–7984. [Google Scholar] [CrossRef]
- Gribanova, E.V.; Kuchek, A.E.; Larionov, M.I. Factors influencing the contact angle value. The contact angle, as a characteristic of the properties of solid surfaces. Russ. Chem. Bull. 2016, 65, 1–13. [Google Scholar] [CrossRef]
- Ali, N.; Teixeira, J.A.; Addali, A.; Al-Zubi, F.; Shaban, E.; Behbehani, I. The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface. Appl. Surf. Sci. 2018, 443, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Ali, N.; Teixeira, J.A.; Addali, A.; Saeed, M.; Al-Zubi, F.; Sedaghat, A.; Bahzad, H. Deposition of stainless steel thin films: An electron beam physical vapour deposition approach. Materials 2019, 12, 571. [Google Scholar] [CrossRef] [Green Version]
- Young, T. III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar] [CrossRef]
- Šiffalovič, P.; Jergel, M.; Benkovičová, M.; Vojtko, A.; Nádaždy, V.; Ivančo, J.; Bodík, M.; Demydenko, M.; Majková, E. Towards new multifunctional coatings for organic photovoltaics. Sol. Energy Mater. Sol. Cells 2014, 125, 127–132. [Google Scholar] [CrossRef]
- Tyowua, A.T.; Targema, M.; Ubuo, E.E. Non-wettable surfaces–from natural to artificial and applications: A critical review. Rev. Adhes. Adhes. 2019, 7, 195–231. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Ning, T.; Xu, W.; Lu, S. Fabrication of superhydrophobic surfaces on zinc substrates and their application as effective corrosion barriers. Appl. Surf. Sci. 2011, 258, 1359–1365. [Google Scholar] [CrossRef]
- Zeng, Q. Size matching effect on Wenzel wetting on fractal surfaces. Results Phys. 2018, 10, 588–593. [Google Scholar] [CrossRef]
- Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 2008, 38, 71–99. [Google Scholar] [CrossRef]
- Wang, X.-S.; Yang, Z.-B.; Chen, J.; Fan, X.-B. Derivation of the Wenzel Equation for Contact Angles of Cylindrical Nano-Droplets on Rough Substrates. J. Comput. Theor. Nanosci. 2016, 13, 374–377. [Google Scholar] [CrossRef]
- Shardt, N.; Elliott, J.A.W. Gibbsian thermodynamics of wenzel wetting (was wenzel wrong revisited). Langmuir 2020, 36, 435–446. [Google Scholar] [CrossRef]
- Gao, L.; McCarthy, T.J. How wenzel and cassie were wrong. Langmuir 2007, 23, 3762–3765. [Google Scholar] [CrossRef]
- McHale, G. Cassie and wenzel: Were they really so wrong? Langmuir 2007, 23, 8200–8205. [Google Scholar] [CrossRef]
- Erbil, H.Y.; Cansoy, C.E. Range of applicability of the wenzel and cassie–baxter equations for superhydrophobic surfaces. Langmuir 2009, 25, 14135–14145. [Google Scholar] [CrossRef]
- Malijevský, A. Does surface roughness amplify wetting? J. Chem. Phys. 2014, 141, 184703. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Wang, L.; Krumpfer, J.W.; Watkins, J.; McCarthy, T.J. Hydrophobization of inorganic oxide surfaces using dimethylsilanediol. Langmuir 2013, 29, 1329–1332. [Google Scholar] [CrossRef] [PubMed]
- Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef]
- Horozov, T.S.; Binks, B.P.; Aveyard, R.; Clint, J.H. Effect of particle hydrophobicity on the formatlon and collapse of fumed silica particle monolayers at the oil-water interface. Colloids Surf. A Physicochem. Eng. Asp. 2006, 282, 377–386. [Google Scholar] [CrossRef]
- Nadiye-Tabbiruka, M.S. Interaction of Water with Silane Modified Aerosil Samples. Colloid Surf. Sci. 2017, 2, 118–124. [Google Scholar]
- Grabowska, K.; Koniorczyk, M. Internal hydrophobization of cementitious materials by using of organosilicon compounds. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 172, p. 14006. [Google Scholar]
- Kang, T.; Jang, I.; Oh, S.-G. Surface modification of silica nanoparticles using phenyl trimethoxy silane and their dispersion stability in N-methyl-2-pyrrolidone. Colloids Surf. A Physicochem. Eng. Asp. 2016, 501, 24–31. [Google Scholar] [CrossRef]
- Daniel, L.M.; Frost, R.L.; Zhu, H.Y. Edge-modification of laponite with dimethyl-octylmethoxysilane. J. Colloid Interface Sci. 2008, 321, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Horozov, T.; Aveyard, R.; Clint, A.J.H.; Binks, B.P. Order–Disorder Transition in Monolayers of Modified Monodisperse Silica Particles at the Octane–Water Interface. Langmuir 2003, 19, 2822–2829. [Google Scholar] [CrossRef]
- Liu, X.-Q.; Tang, R.-Z. Biological responses to nanomaterials: Understanding nano-bio effects on cell behaviors. Drug Deliv. 2017, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Xiong, T.; Zhao, L.; Wang, F.; Liu, H.; Hu, R.; Zhou, J.; Zhou, W.; Chen, S. Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 2017, 11, 12509–12518. [Google Scholar] [CrossRef]
- De Bartolo, L.; Catapano, G.; Della Volpe, C.; Drioli, E. The effect of surface roughness of microporous membranes on the kinetics of oxygen consumption and ammonia elimination by adherent hepatocytes. J. Biomater. Sci. Polym. Ed. 1999, 10, 641–655. [Google Scholar] [CrossRef] [PubMed]
- Siau, S.; Vervaet, A.; Nalines, S.; Schacht, E.; Van Calster, A. Kinetic study of wet chemical treatments on the surface roughness of epoxy polymer layers for buildup layers: II. Oxidative Treatment of the surface. J. Electrochem. Soc. 2004, 151, C831. [Google Scholar] [CrossRef]
- Choudhury, U.; Soler, L.; Gibbs, J.G.; Sanchez, S.; Fischer, P. Surface roughness-induced speed increase for active Janus micromotors. Chem. Commun. 2015, 51, 8660–8663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Zhao, Z.; Cheng, T.; Fortunelli, A.; Chen, C.-Y.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B.V.; Lin, Z.; et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, K.; Lu, B.; Yin, Y. Enhanced effect and mechanism of SiO2 addition in super-hydrophilic property of TiO2 films. Surf. Coatings Technol. 2003, 173, 219–223. [Google Scholar] [CrossRef]
- Jun, D.; Wu, Q.; Zhong, S.; Gu, X.; Liu, J.; Guo, H.; Zhang, W.; Peng, H.; Zou, J. Effect of hydroxyl groups on hydrophilic and photocatalytic activities of rare earth doped titanium dioxide thin films. J. Rare Earths 2015, 33, 148–153. [Google Scholar]
- Yu, J.; Zhao, X.; Jimmy, C.Y.; Zhong, G.; Han, J.; Zhao, Q. The grain size and surface hydroxyl content of super-hydrophilic TiO2/SiO2 composite nanometer thin films. J. Mater. Sci. Lett. 2001, 20, 1745–1748. [Google Scholar] [CrossRef]
- Al-Turaif, H. Relationship between surface chemistry and surface energy of different shape pigment blend coatings. J. Coat. Technol. Res. 2007, 5, 85–91. [Google Scholar] [CrossRef]
- Baeta, N.; Maria, I.; Oliva, V.; Mrabet, B.; Connan, C.; Chehimi, M.M.; Delamar, M.; Hutton, S.; Roberts, A.; Benzarti, K. Surface chemistry of cement pastes: A study by X-ray photoelectron spectroscopy. Surf. Interface Anal. 2002, 33, 834–841. [Google Scholar]
- Somorjai, G.A.; Li, Y. Impact of surface chemistry. Proc. Natl. Acad. Sci. USA 2011, 108, 917–924. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ubuo, E.E.; Udoetok, I.A.; Tyowua, A.T.; Ekwere, I.O.; Al-Shehri, H.S. The Direct Cause of Amplified Wettability: Roughness or Surface Chemistry? J. Compos. Sci. 2021, 5, 213. https://doi.org/10.3390/jcs5080213
Ubuo EE, Udoetok IA, Tyowua AT, Ekwere IO, Al-Shehri HS. The Direct Cause of Amplified Wettability: Roughness or Surface Chemistry? Journal of Composites Science. 2021; 5(8):213. https://doi.org/10.3390/jcs5080213
Chicago/Turabian StyleUbuo, Emmanuel E., Inimfon A. Udoetok, Andrew T. Tyowua, Ifiok O. Ekwere, and Hamza S. Al-Shehri. 2021. "The Direct Cause of Amplified Wettability: Roughness or Surface Chemistry?" Journal of Composites Science 5, no. 8: 213. https://doi.org/10.3390/jcs5080213
APA StyleUbuo, E. E., Udoetok, I. A., Tyowua, A. T., Ekwere, I. O., & Al-Shehri, H. S. (2021). The Direct Cause of Amplified Wettability: Roughness or Surface Chemistry? Journal of Composites Science, 5(8), 213. https://doi.org/10.3390/jcs5080213