On the Machining Temperature and Hole Quality of CFRP Laminates When Using Diamond-Coated Special Drills
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Characterization of Drilling Temperatures
3.2. Hole Wall Morphologies
3.3. Hole Diameter
4. Conclusions
- Development of the drilling temperature can be roughly divided into three stages in terms of the tool–work interaction. In general, the maximum temperature values can be attained when the drill edges are fully engaged into the composite workpiece. The progression of the composite drilling temperature basically shows a high sensitivity to the input process parameters. In most cases, both the cutting speed and the feed rate exhibit a positive impact on the temperature rise for all of the drills examined.
- The candlestick drills are found to produce lower magnitudes of drilling temperatures than the step ones. To suppress the temperature progression, low cutting speeds and low feed rates are recommended for the drilling of CFRP composites.
- The cut CFRP hole morphologies are characterized by finely-cut fiber surfaces along with a certain degree of surface cavities due to the loss of matrix. The step drill produces better hole wall morphologies and lower surface roughness values than the candlestick drill due to the reaming effects of its secondary step edges. The main surface defects residing within the cut composite holes include surface cavities, resin smearing, and fiber pullout voids.
- A wedge-shaped cylindrical surface is noted for the cut composite hole wall due to the intensified tool vibration arising from the decreased stiffness of the last fiber plies with the tool advancement. Both the process parameters significantly affect the variations of the hole diameters, irrespective of the measuring side. In general, the highest speed and moderate feed are suggested for the candlestick drills, while the moderate speed and lower feed are recommended for the step drills to create more consistent holes close to the nominal diameter.
Author Contributions
Funding
Conflicts of Interest
References
- Abrão, A.M.; Faria, P.E.; Rubio, J.C.C.; Reis, P.; Davim, J.P. Drilling of fiber reinforced plastics: A review. J. Mater. Process. Technol. 2007, 186, 1–7. [Google Scholar] [CrossRef]
- Geier, N.; Davim, J.P.; Szalay, T. Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review. Compos. Pt. A-Appl. Sci. Manuf. 2019, 125, 105552. [Google Scholar] [CrossRef]
- Liu, D.; Tang, Y.; Cong, W.L. A review of mechanical drilling for composite laminates. Compos. Struct. 2012, 94, 1265–1279. [Google Scholar] [CrossRef]
- Aamir, M.; Tolouei-Rad, M.; Giasin, K.; Nosrati, A. Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: A review. Int. J. Adv. Manuf. Technol. 2019, 105, 2289–2308. [Google Scholar] [CrossRef]
- Soutis, C. Fibre reinforced composites in aircraft construction. Prog. Aerosp. Sci. 2005, 41, 143–151. [Google Scholar] [CrossRef]
- Giasin, K.; Ayvar-Soberanis, S. An investigation of burrs, chip formation, hole size, circularity and delamination during drilling operation of GLARE using ANOVA. Compos. Struct. 2017, 159, 745–760. [Google Scholar] [CrossRef]
- Teti, R. Machining of composite materials. CIRP Ann.-Manuf. Technol. 2002, 51, 611–634. [Google Scholar] [CrossRef]
- Che, D.; Saxena, I.; Han, P.; Guo, P.; Ehmann, K. Machining of carbon fiber reinforced plastics/polymers: A literature review. J. Manuf. Sci. Eng.-Trans. ASME 2014, 136, 034001. [Google Scholar] [CrossRef]
- Xu, J.; Li, C.; Mi, S.; An, Q.; Chen, M. Study of drilling-induced defects for CFRP composites using new criteria. Compos. Struct. 2018, 201, 1076–1087. [Google Scholar] [CrossRef]
- Xu, J.; Li, C.; Chen, M.; El Mansori, M.; Ren, F. An investigation of drilling high-strength CFRP composites using specialized drills. Int. J. Adv. Manuf. Technol. 2019, 103, 3425–3442. [Google Scholar] [CrossRef]
- Wang, D.H.; Ramulu, M.; Arola, D. Orthogonal cutting mechanisms of graphite/epoxy composite. Part II: Multi-directional laminate. Int. J. Mach. Tools Manuf. 1995, 35, 1639–1648. [Google Scholar] [CrossRef]
- Wang, D.H.; Ramulu, M.; Arola, D. Orthogonal cutting mechanisms of graphite/epoxy composite. Part I: Unidirectional laminate. Int. J. Mach. Tools Manuf. 1995, 35, 1623–1638. [Google Scholar] [CrossRef]
- Iliescu, D.; Gehin, D.; Iordanoff, I.; Girotabc, F.; Gutiérrez, M.E. A discrete element method for the simulation of CFRP cutting. Compos. Sci. Technol. 2010, 70, 73–80. [Google Scholar] [CrossRef]
- Yan, X.; Reiner, J.; Bacca, M.; Altintas, Y.; Vaziri, R. A study of energy dissipating mechanisms in orthogonal cutting of UD-CFRP composites. Compos. Struct. 2019, 220, 460–472. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; An, Q.; Cai, X.; Ming, W.; Chen, M. Drilling temperature and hole quality in drilling of CFRP/aluminum stacks using diamond coated drill. Int. J. Precis. Eng. Manuf. 2015, 16, 1689–1697. [Google Scholar] [CrossRef]
- Wang, H.X.; Zhang, X.H.; Duan, Y.G. Effects of drilling area temperature on drilling of carbon fiber reinforced polymer composites due to temperature-dependent properties. Int. J. Adv. Manuf. Technol. 2018, 96, 2943–2951. [Google Scholar] [CrossRef]
- Merino-Pérez, J.L.; Royer, R.; Ayvar-Soberanis, S.; Merson, E.; Hodzic, A. On the temperatures developed in CFRP drilling using uncoated WC-Co tools Part I: Workpiece constituents, cutting speed and heat dissipation. Compos. Struct. 2015, 123, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Merino-Pérez, J.L.; Hodzic, A.; Merson, E.; Merson, E.; Hodzic, A. On the temperatures developed in CFRP drilling using uncoated WC-Co tools Part II: Nanomechanical study of thermally aged CFRP composites. Compos. Struct. 2015, 123, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Rubio, J.C.C.; Panzera, T.H.; Scarpa, F. Machining behaviour of three high-performance engineering plastics. Proc. Inst. Mech. Eng. Pt. B-J. Eng. Manuf. 2015, 229, 28–37. [Google Scholar] [CrossRef]
- Wang, B.; Gao, H.; Cao, B.; Yuan, Z.; Zhe, Z. Mechanism of damage generation during drilling of carbon/epoxy composites and titanium alloy stacks. Proc. Inst. Mech. Eng. Pt. B-J. Eng. Manuf. 2014, 228, 698–706. [Google Scholar] [CrossRef]
- Davim, J.P.; Reis, P. Drilling carbon fiber reinforced plastics manufactured by autoclave-experimental and statistical study. Mater. Des. 2003, 24, 315–324. [Google Scholar] [CrossRef]
- Davim, J.P.; Reis, P. Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Compos. Struct. 2003, 59, 481–487. [Google Scholar] [CrossRef]
- Xu, J.; An, Q.; Cai, X.; Chen, M. Drilling machinability evaluation on new developed high-strength T800S/250F CFRP laminates. Int. J. Precis. Eng. Manuf. 2013, 14, 1687–1696. [Google Scholar] [CrossRef]
- Bonnet, C.; Poulachon, G.; Rech, J.; Girard, Y.; Costes, J.P. CFRP drilling: Fundamental study of local feed force and consequences on hole exit damage. Int. J. Mach. Tools Manuf. 2015, 94, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Babu, J.; Sunny, T.; Paul, N.A.; Mohan, K.P.; Philip, J.; Davim, J.P. Assessment of delamination in composite materials: A review. Proc. Inst. Mech. Eng. Pt. B-J. Eng. Manuf. 2016, 230, 1990–2003. [Google Scholar] [CrossRef]
- Xu, J.; An, Q.; Chen, M. An experimental investigation on cutting-induced damage when drilling high-strength T800S/250F carbon fiber-reinforced polymer. Proc. Inst. Mech. Eng. Pt. B-J. Eng. Manuf. 2017, 231, 1931–1940. [Google Scholar] [CrossRef]
- Xu, J.; Huang, X.; Chen, M.; Davim, J.P. Drilling characteristics of carbon/epoxy and carbon/polyimide composites. Mater. Manuf. Processes 2020, 35, 1732–1740. [Google Scholar] [CrossRef]
- Su, F.; Wang, Z.; Yuan, J.; Cheng, Y. Study of thrust forces and delamination in drilling carbon-reinforced plastics (CFRPs) using a tapered drill-reamer. Int. J. Adv. Manuf. Technol. 2015, 80, 1457–1469. [Google Scholar] [CrossRef]
- Ameur, M.F.; Habak, M.; Kenane, M.; Aouici, H.; Cheikh, H. Machinability analysis of dry drilling of carbon/epoxy composites, cases of exit delamination and cylindricity error. Int. J. Adv. Manuf. Technol. 2017, 88, 2557–2571. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.; Wang, C.; Ko, S. Wear behaviour of CVD diamond-coated tools in the drilling of woven CFRP composites. Wear 2018, 398–399, 1–12. [Google Scholar] [CrossRef]
- Rawat, S.; Attia, H. Wear mechanisms and tool life management of WC-Co drills during dry high speed drilling of woven carbon fibre composites. Wear 2009, 267, 1022–1030. [Google Scholar] [CrossRef]
- Faraz, A.; Biermann, D.; Weinert, K. Cutting edge rounding, an innovative tool wear criterion in drilling CFRP composite laminates. Int. J. Mach. Tools Manuf. 2009, 49, 1185–1196. [Google Scholar] [CrossRef]
- Wang, X.; Kwon, P.Y.; Sturtevant, C.; Kim, D.; Lantripc, J. Tool wear of coated drills in drilling CFRP. J. Manuf. Process. 2013, 15, 127–135. [Google Scholar] [CrossRef]
- Ismail, S.; Dhakal, H.; Dimla, E.; Popov, I. Recent advances in twist drill design for composite machining, A critical review. Proc. Inst. Mech. Eng. Pt. B-J. Eng. Manuf. 2017, 231, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Fu, R.; Jia, Z.Y.; Wang, F.J.; Jin, Y.; Sun, D.; Yang, L.J.; Cheng, D. Drill-exit temperature characteristics in drilling of UD and MD CFRP composites based on infrared thermography. Int. J. Mach. Tools Manuf. 2018, 135, 24–37. [Google Scholar] [CrossRef]
- Kubher, S.; Gururaja, S.; Zitoune, R. In-situ cutting temperature and machining force measurements during conventional drilling of carbon fiber polymer composite laminates. J. Compos. Mater. 2021, 55, 2807–2822. [Google Scholar] [CrossRef]
- Xu, J.; Li, C.; Chen, M.; El Mansori, M.; Davim, J.P. On the analysis of temperatures, surface morphologies and tool wear in drilling CFRP/Ti6Al4V stacks under different cutting sequence strategies. Compos. Struct. 2020, 234, 111708. [Google Scholar] [CrossRef]
Reinforcement | Matrix Base | Fiber Volume Fraction | Fiber Bundles |
---|---|---|---|
T700 carbon fibers | FRD-YZR-03 epoxy | 60% | 7 µm, 12 K |
Tensile Modulus | Tensile Strength | Poisson’s Ratio, ν | Flexural Modulus | Flexural Strength | Shear Strength | Glass Transition Temperature |
---|---|---|---|---|---|---|
240 GPa | 4900 MPa | 0.30 | 210 GPa | 1500 MPa | 125 MPa | 125~135 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Lin, T.; Davim, J.P. On the Machining Temperature and Hole Quality of CFRP Laminates When Using Diamond-Coated Special Drills. J. Compos. Sci. 2022, 6, 45. https://doi.org/10.3390/jcs6020045
Xu J, Lin T, Davim JP. On the Machining Temperature and Hole Quality of CFRP Laminates When Using Diamond-Coated Special Drills. Journal of Composites Science. 2022; 6(2):45. https://doi.org/10.3390/jcs6020045
Chicago/Turabian StyleXu, Jinyang, Tieyu Lin, and Joao Paulo Davim. 2022. "On the Machining Temperature and Hole Quality of CFRP Laminates When Using Diamond-Coated Special Drills" Journal of Composites Science 6, no. 2: 45. https://doi.org/10.3390/jcs6020045
APA StyleXu, J., Lin, T., & Davim, J. P. (2022). On the Machining Temperature and Hole Quality of CFRP Laminates When Using Diamond-Coated Special Drills. Journal of Composites Science, 6(2), 45. https://doi.org/10.3390/jcs6020045