Experimental Investigation on Machine-Induced Damages during the Milling Test of Graphene/Carbon Incorporated Thermoset Polymer Nanocomposites
Abstract
:1. Introduction
2. Experimental Work
2.1. Development of Graphene-Modified Carbon-Fiber Reinforced Polymer Nanocomposites
2.2. Experimental Setup and Response Measurement during Milling of Modified Composites
3. Result and Discussion
3.1. Influence of Process Parameters on MRR
3.2. Influence of Process Parameters on Cutting Force
3.3. Influence of Process Parameters on Surface Roughness
3.4. Influence of Process Parameters on Milling-Induced Delamination
4. Conclusions
- The cutting force and MRR trend observed in the proposed laminate nanocomposite are similar to traditional materials. The value of MRR and Fc is higher at the combined effect of the higher feed and medium cutting speed;
- The quality of the machined surface can be controlled at a medium cutting speed, lower feed, lower depth of cut and a higher addition of nanomaterial;
- A significant amount of matrix (epoxy) damage is observed at lower feed rates and higher cutting speeds. Furthermore, chip separation around the edge of the machined sample (milling slot) was observed at lower cutting speed and higher value feed;
- The lower value of cutting speed and higher feed value was observed for fiber fraying, fiber pullout, and matrix smearing, with fractured fibers (damage) firmly embedded in the matrix. However, medium cutting speed machining can be used to effectively machine modified epoxy/CFRP laminates at optimized lower feed rates, the depth of cut depth, and weight% of graphene nanoparticles;
- The addition of graphene oxide contributes significantly to the reduction of milling induce damages. A little addition of graphene improves the machining efficiency of the proposed nanocomposite.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wiegmann, E.; Helmers, L.; Michalowski, P.; Kwade, A. Highly scalable and solvent-free fabrication of a solid polymer electrolyte separator via film casting technology. Adv. Ind. Manuf. Eng. 2022, 3, 100065. [Google Scholar] [CrossRef]
- Altin Karataş, M.; Gökkaya, H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def. Technol. 2018, 14, 318–326. [Google Scholar] [CrossRef]
- Geng, D.; Liu, Y.; Shao, Z.; Lu, Z.; Cai, J.; Li, X.; Jiang, X.; Zhang, D. Delamination formation, evaluation and suppression during drilling of composite laminates: A review. Compos. Struct. 2019, 216, 168–186. [Google Scholar] [CrossRef]
- Burkov, M.; Eremin, A. Hybrid CFRP/SWCNT Composites with Enhanced Electrical Conductivity and Mechanical Properties. J. Mater. Eng. Perform. 2018, 27, 5984–5991. [Google Scholar] [CrossRef]
- Gang, D. The effect of surface treatment of CF and graphene oxide on the mechanical properties of PI composite. J. Thermoplast. Compos. Mater. 2018, 31, 1219–1231. [Google Scholar] [CrossRef]
- Singh, K.K.; Kumar, D. Experimental investigation and modelling of drilling on multi-wall carbon nanotube–embedded epoxy/glass fabric polymeric nanocomposites. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 1943–1959. [Google Scholar] [CrossRef]
- Rafiee, M.A.; Yavari, F. Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading. J. Nanopart. Res. 2011, 13, 733–737. [Google Scholar] [CrossRef]
- Liang, J.; Zou, S.; Du, Q. Impact and fl exural properties of polypropylene composites reinforced with multi-walled carbon nanotubes. Polym. Test. 2018, 70, 434–440. [Google Scholar] [CrossRef]
- Gantayat, S.; Rout, D.; Swain, S.K. Mechanical properties of functionalized multiwalled carbon nanotube/epoxy nanocomposites. Mater. Today Proc. 2017, 4, 4061–4064. [Google Scholar] [CrossRef]
- Watson, G.; Starost, K.; Bari, P.; Faisal, N.; Mishra, S.; Njuguna, J. Tensile and Flexural Properties of Hybrid Graphene Oxide/Epoxy Carbon Fibre Reinforced Composites. IOP Conf. Ser. Mater. Sci. Eng. 2017, 195, 012009. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.; Chen, J.Y.; Daniel, I.M. Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement. Scr. Mater. 2007, 56, 685–688. [Google Scholar] [CrossRef]
- Abdullah, S.I.; Ansari, M.N.M. Mechanical properties of graphene oxide (GO)/epoxy composites. HBRC J. 2015, 11, 151–156. [Google Scholar] [CrossRef]
- Ghosh, S.; Nitin, B.; Remanan, S.; Bhattacharjee, Y.; Ghorai, A.; Dey, T.; Das, T.K.; Das, N.C. A Multifunctional Smart Textile Derived from Merino Wool/Nylon Polymer Nanocomposites as Next Generation Microwave Absorber and Soft Touch Sensor. ACS Appl. Mater. Interfaces 2020, 12, 17988–18001. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Ganguly, S.; Das, P.; Das, T.K.; Bose, M.; Singha, N.K.; Das, A.K.; Das, N.C. Fabrication of Reduced Graphene Oxide/Silver Nanoparticles Decorated Conductive Cotton Fabric for High Performing Electromagnetic Interference Shielding and Antibacterial Application. Fibers Polym. 2019, 20, 1161–1171. [Google Scholar] [CrossRef]
- Davim, J.P.; Reis, P. Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J. Mater. Process. Technol. 2005, 160, 160–167. [Google Scholar] [CrossRef]
- Fleischer, J.; Teti, R.; Lanza, G.; Mativenga, P.; Möhring, H.C.; Caggiano, A. Composite materials parts manufacturing. CIRP Ann. 2018, 67, 603–626. [Google Scholar] [CrossRef]
- Hintze Wolfgang, W.; Hartmann, D.; Schütte, C. Occurrence and propagation of delamination during the machining of carbon fibre reinforced plastics (CFRPs)—An experimental study. Compos. Sci. Technol. 2011, 71, 1719–1726. [Google Scholar] [CrossRef]
- Voss, R.; Seeholzer, L.; Kuster, F.; Wegener, K. Influence of fibre orientation, tool geometry and process parameters on surface quality in milling of CFRP. CIRP J. Manuf. Sci. Technol. 2017, 18, 75–91. [Google Scholar] [CrossRef]
- Azmi, A.I.; Lin, R.J.T.; Bhattacharyya, D. Machinability study of glass fibre-reinforced polymer composites during end milling. Int. J. Adv. Manuf. Technol. 2013, 64, 247–261. [Google Scholar] [CrossRef]
- Bagci, E.; Yüncüoğlu, E.U. The effects of milling strategies on forces, material removal rate, tool deflection, and surface errors for the rough machining of complex surfaces. Stroj. Vestnik/J. Mech. Eng. 2017, 63, 643–656. [Google Scholar]
- Wang, C.; Wen, L.; Ming, W.; An, Q.; Chen, M. Experimental study on effects of fiber cutting angle in milling of high-strength unidirectional carbon fiber–reinforced polymer laminates. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 1813–1824. [Google Scholar] [CrossRef]
- Jenarthanan, M.P.; Jeyapaul, R. Optimisation of machining parameters on milling of GFRP composites by desirability function analysis using Taguchi method. Int. J. Eng. Sci. Technol. 2018, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Adak, N.C.; Chhetri, S.; Sabarad, S.; Roy, H.; Murmu, N.C.; Samanta, P.; Kuila, T. Direct observation of micro delamination in graphene oxide incorporated carbon fiber/epoxy composite via in-situ tensile test. Compos. Sci. Technol. 2019, 177, 57–65. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Sun, S.; Li, X.; Zhao, F.; Jiang, B.; Huang, Y. Electrophoretic deposition of graphene oxide on continuous carbon fibers for reinforcement of both tensile and interfacial strength. Compos. Sci. Technol. 2016, 135, 46–53. [Google Scholar] [CrossRef]
- Shil, A.; Roy, S.; Balaji, P.S.; Kumar Katiyar, J.; Pramanik, S.; Kumar Sharma, A. Experimental analysis of mechanical properties of stir casted aluminium-graphene nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. 2019, 653, 012021. [Google Scholar] [CrossRef] [Green Version]
- Bhawal, P.; Ganguly, S.; Chaki, T.K.; Das, N.C. Synthesis and characterization of graphene oxide filled ethylene methyl acrylate hybrid nanocomposites. RSC Adv. 2016, 6, 20781–20790. [Google Scholar] [CrossRef]
- Arun, G.K.; Sreenivas, N.; Reddy, K.B.; Krishna Reddy, K.S.; Shashi Kumar, M.E.; Pramod, R. Investigation on Mechanical Properties of Graphene Oxide reinforced GFRP. IOP Conf. Ser. Mater. Sci. Eng. 2018, 310, 012158. [Google Scholar] [CrossRef]
- Palanikumar, K.; Karunamoorthy, L.; Karthikeyan, R. Multiple performance optimization of machining parameters on the machining of GFRP composites using carbide (K10) tool. Mater. Manuf. Process. 2006, 21, 846–852. [Google Scholar] [CrossRef]
- Wang, F.J.; Zhang, B.Y.; Zhao, M.; Cheng, D.; Wang, Z.G. Evolution laws of fiber-matrix interface cracks in machining of carbon fiber reinforced polymer. Int. J. Adv. Manuf. Technol. 2019, 101, 963–977. [Google Scholar] [CrossRef]
- Hossain, M.S.; Dhar, N.R. Machinability Study of a Kevlar and Glass Reinforced Polyester. J. Mech. Eng. 2019, 49, 18–26. [Google Scholar]
- Wang, H.; Sun, J.; Zhang, D.; Guo, K.; Li, J. The effect of cutting temperature in milling of carbon fiber reinforced polymer composites. Compos. Part A Appl. Sci. Manuf. 2016, 91, 380–387. [Google Scholar] [CrossRef]
- Palanikumar, K. Analyzing Surface Quality in Machined Composites; Woodhead Publishing Limited: Cambridge, UK, 2012. [Google Scholar]
- Ha, S.J.; Kim, K.B.; Yang, J.K.; Cho, M.W. Influence of cutting temperature on carbon fiber-reinforced plastic composites in high-speed machining. J. Mech. Sci. Technol. 2017, 31, 1861–1867. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Subramanian, H.; Arumugam, V.; Dhakal, H.N. Influence of milled glass fillers on the impact and compression after impact behavior of glass/epoxy composite laminates. Polym. Test. 2019, 75, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.; Gkikas, G.; Paipetis, A.S.; Barkoula, N.M. Effect of CNTs addition on the erosive wear response of epoxy resin and carbon fibre composites. Compos. Part A Appl. Sci. Manuf. 2016, 84, 299–307. [Google Scholar] [CrossRef]
- Wang, X.; Melly, S.K.; Li, N.; Wang, G.D.; Peng, T.; Li, Y.; Zhao, Q. Di Helical milling response of glass fiber-reinforced polymer composite with carbon nanotube buckypaper interlayer. Polym. Polym. Compos. 2020, 28, 378–387. [Google Scholar]
- Razfar, M.R.; Zadeh, M.R.Z. Optimum damage and surface roughness prediction in end milling glass fibre-reinforced plastics, using neural network and genetic algorithm. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2009, 223, 653–664. [Google Scholar] [CrossRef]
- Kumar, J.; Verma, R.K. Experimental investigations and multiple criteria optimization during milling of graphene oxide (GO) doped epoxy/CFRP composites using TOPSIS-AHP hybrid Module. FME Trans. 2020, 48, 628–635. [Google Scholar] [CrossRef]
- Kumar, J.; Verma, R.K. Delamination assessment during machining of laminated polymer nanocomposite. Int. J. Mod. Manuf. Technol. 2021, 13, 109–115. [Google Scholar] [CrossRef]
Sample | Tensile Strength (MPa) | Flexural Strength (MPa) |
---|---|---|
1 | 934.35 | 442.55 |
2 | 875.04 | 363.70 |
3 | 774.01 | 289.95 |
Sr. No. | Factors | Nomenclature | Range/Unit |
---|---|---|---|
1 | Cutting speed | N | 12.56–37.68 m/min |
2 | Feed rate | F | 80–240 mm/min |
3 | Depth of cut | D | 0.5–1.5 mm |
4 | Graphene nanomaterial | G | 1–3 wt.% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, J.; Abhishek, K.; Xu, J.; Verma, R.K. Experimental Investigation on Machine-Induced Damages during the Milling Test of Graphene/Carbon Incorporated Thermoset Polymer Nanocomposites. J. Compos. Sci. 2022, 6, 77. https://doi.org/10.3390/jcs6030077
Kumar J, Abhishek K, Xu J, Verma RK. Experimental Investigation on Machine-Induced Damages during the Milling Test of Graphene/Carbon Incorporated Thermoset Polymer Nanocomposites. Journal of Composites Science. 2022; 6(3):77. https://doi.org/10.3390/jcs6030077
Chicago/Turabian StyleKumar, Jogendra, Kumar Abhishek, Jinyang Xu, and Rajesh Kumar Verma. 2022. "Experimental Investigation on Machine-Induced Damages during the Milling Test of Graphene/Carbon Incorporated Thermoset Polymer Nanocomposites" Journal of Composites Science 6, no. 3: 77. https://doi.org/10.3390/jcs6030077
APA StyleKumar, J., Abhishek, K., Xu, J., & Verma, R. K. (2022). Experimental Investigation on Machine-Induced Damages during the Milling Test of Graphene/Carbon Incorporated Thermoset Polymer Nanocomposites. Journal of Composites Science, 6(3), 77. https://doi.org/10.3390/jcs6030077