Enhanced Reverse-Engineering Method for Accurately Predicting Lamina Properties in Laminated Composites via Combined Static and Dynamic Finite Element Simulations
Abstract
:1. Introduction
2. Modeling Approach for Predicting Lamina Properties
3. Procedure for Predicting Lamina Properties
3.1. Tensile Simulation for Predicting EX and EY of the Laminated Composite
3.2. Prediction of E1 and E2 of a Lamina and the Optimum Stacking Design
3.3. Coupon Test Simulation with Errors of Fabrication
4. Results and Discussion
4.1. Validation of Simulation Procedures for Predicting Lamina Properties
4.2. Validation of Coupon Test Simulation with Errors of Fabrication
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shokrieh, M.M.; Rezaei, D. Analysis and optimization of a composite leaf spring. Compos. Struct. 2003, 60, 317–325. [Google Scholar] [CrossRef]
- Choi, B.-H.; Lee, J.-B.; Choi, B. A Study on the Hysteresis Characteristics and Finite Element Analysis of FRP Leaf Spring. J. Adv. Eng. Technol. 2009, 2, 291–298. Available online: https://kiss.kstudy.com/Detail/Ar?key=3346071 (accessed on 1 June 2023).
- Kim, C.-S.; Park, S.-Y. Diesel engine intake port analysis using reverse-engineering technique. Trans. Korean Soc. Automot. Eng. 2015, 23, 502–507. [Google Scholar] [CrossRef]
- Roos, T.H.; Quin, R.L.; De Beer, F.C.; Nshimirimana, R.M. Neutron tomography as a reverse engineering method applied to the IS-60 Rover gas turbine. Nucl. Instrum. Methods Phys. Res. A 2011, 651, 329–335. [Google Scholar] [CrossRef]
- Dúbravčík, M.; Kender, Š. Application of reverse engineering techniques in mechanics system services. Procedia Eng. 2012, 48, 96–104. [Google Scholar] [CrossRef]
- Gameros, A.; De Chiffre, L.; Siller, H.R.; Hiller, J.; Genta, G. A reverse engineering methodology for nickel alloy turbine blades with internal features. CIRP J. Manuf. Sci. Technol. 2015, 9, 116–124. [Google Scholar] [CrossRef]
- Oh, S.; Chang, B.; Ro, Y. A study on the appropriateness of virtual machine for reverse engineering. Trans. Korean Soc. Automot. Eng. 2014, 22, 31–38. [Google Scholar] [CrossRef]
- Jang, A.; Jeong, S.; Park, M.J.; Ju, Y.K. Structural evaluation by reverse engineering with 3D laser scanner. ce/papers 2023, 6, 308–314. [Google Scholar] [CrossRef]
- Kim, Y.-W.; Kim, J.-H.; Jeong, K.-S. Crash FE analysis of front side assembly for reverse engineering. Trans. Korean Soc. Automot. Eng. 2007, 15, 89–98. [Google Scholar]
- Cumbo, R.; Baroni, A.; Ricciardi, A.; Corvaglia, S. Design allowables of composite laminates: A review. J. Compos. Mater. 2022, 56, 3617–3634. [Google Scholar] [CrossRef]
- Carlsson, L.A.; Adams, D.F.; Pipes, R.B. Experimental Characterization of Advanced Composite Materials; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Maurin, R.; Davies, P.; Baral, N.; Baley, C. Transverse properties of carbon fibres by nano-indentation and micro-mechanics. Appl. Compos. Mater. 2008, 15, 61–73. [Google Scholar] [CrossRef]
- ASTM D3379; Standard Test Method for Tensile Strength and Young’s Modulus for High-Modulus Single-Filament Materials. ASTM International: Conshohocken, PA, USA, 1989.
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: Conshohocken, PA, USA, 2014.
- Moon, J.B.; Kim, J.; Jang, H.K.; Park, J. A study on calculation of composites lamina material properties through reverse engineering of light weight composite car-body. Trans. Korean Soc. Automot. Eng. 2017, 25, 1–10. [Google Scholar] [CrossRef]
- Hwang, Y.-T.; Lim, J.-Y.; Nam, B.-G.; Kim, H.-S. Analytical prediction and validation of elastic behavior of carbon-fiber-reinforced woven composites. Compos. Res. 2018, 31, 276–281. [Google Scholar]
- Gibson, R.F. Principles of Composite Material Mechanics; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Li, X.; Guan, Z.; Li, Z.; Liu, L. A new stress-based multi-scale failure criterion of composites and its validation in open hole tension tests. Chin. J. Aeronaut. 2014, 27, 1430–1441. [Google Scholar] [CrossRef]
- Vanaerschot, A.; Cox, B.N.; Lomov, S.V.; Vandepitte, D. Multi-scale modelling strategy for textile composites based on stochastic reinforcement geometry. Comput. Methods Appl. Mech. Eng. 2016, 310, 906–934. [Google Scholar] [CrossRef]
- Furtado, S.C.R.; Araújo, A.L.; Silva, A. Inverse characterization of vegetable fibre-reinforced composites exposed to environmental degradation. Compos. Struct. 2018, 189, 529–544. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Gosling, P.D.; Ullah, Z.; Kaczmarczyk, Ł.; Pearce, C.J. Exploiting the benefits of multi-scale analysis in reliability analysis for composite structures. Compos. Struct. 2016, 155, 197–212. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Kattan, P.I. Mechanics of Composite Materials with MATLAB; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Reddy, J.N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Chia, C.-Y. Nonlinear Analysis of Plates; McGraw-Hill International Book Company: New York, NY, USA, 1980. [Google Scholar]
- Ribeiro, P. A hierarchical finite element for geometrically non-linear vibration of doubly curved, moderately thick isotropic shallow shells. Int. J. Numer. Methods Eng. 2003, 56, 715–738. [Google Scholar] [CrossRef]
- Akhavan, H.; Ribeiro, P. Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers. Compos. Struct. 2011, 93, 3040–3047. [Google Scholar] [CrossRef]
- Zebdi, O.; Boukhili, R.; Trochu, F. An inverse approach based on laminate theory to calculate the mechanical properties of braided composites. J. Reinf. Plast. Compos. 2009, 28, 2911–2930. [Google Scholar] [CrossRef]
- Sztefek, P.; Olsson, R. Nonlinear compressive stiffness in impacted composite laminates determined by an inverse method. Compos. A 2009, 40, 260–272. [Google Scholar] [CrossRef]
- ASTM D3039; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: Singapore, 2007.
- Liu, H.; Chen, W.; Sudjianto, A. Probabilistic Sensitivity Analysis Methods for Design under Uncertainty. In Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, New York, NY, USA, 30 August–1 September 2004; p. 4589. [Google Scholar]
Material Type | CFRP UD Prepreg |
---|---|
Stacking sequence | [0/90] s |
Thickness of one lamina | 0.15 mm |
Dimension of specimen | 13 × 240 mm |
E1 of one lamina | 140 GPa |
E2 of one lamina | 8.4 GPa |
G12 of one lamina | 4.5 GPa |
G23 of one lamina | 3.5 GPa |
Poisson’s ratio12 of one lamina | 0.281 |
Poisson’s ratio23 of one lamina | 0.4 |
Node | 1098 |
Elements | 963 |
Material Type | CFRP UD Prepreg |
---|---|
Stacking sequence | [0/90] s |
Thickness of one lamina | 0.15 mm |
Dimension of specimen | 13 × 240 mm |
Boundary of E1 of one lamina | 117 GPa < E1 < 144 GPa |
Boundary of E2 of one lamina | 7.68 GPa < E2 < 9.02 GPa |
Stress value to be obtained by inverse calculation | 296.54 MPa |
Strain value to be obtained by inverse calculation | 0.00284 |
The optimization tool used | MOGA |
Initial Input Values | Candidate 1 | Candidate 2 | Candidate 3 | |
---|---|---|---|---|
E1 of lamina (GPa) (Error %) | 140.49 | 140.93 (0.31%) | 142.14 (1.17%) | 140.83 (0.24%) |
E2 of lamina (GPa) (Error %) | 8.49 | 7.47 (12.01%) | 7.88 (7.18%) | 8.29 (2.35%) |
Simulated stress of the composite (MPa) (Error %) | 296.54 | 297.32 (0.26%) | 299.98 (1.16%) | 297.23 (0.23%) |
Initial Input Values | Candidate 1 | Candidate 2 | Candidate 3 | |
---|---|---|---|---|
E1 of lamina (GPa) (Error %) | 140.49 | 140.63 (0.09%) | 140.89 (0.28%) | 140.83 (0.24%) |
E2 of lamina (GPa) (Error %) | 8.49 | 8.18 (3.65%) | 7.87 (7.30%) | 8.90 (4.82%) |
Simulated stress of the composite (MPa) (Error %) | 296.54 | 296.79 (0.08%) | 297.3 (0.25%) | 297.33 (0.26%) |
1st Bending frequency (Hz) (Error %) | 28.79 | 28.8 (0.03%) | 28.82 (0.1%) | 28.83 (0.13%) |
1st Torsion frequency (Hz) (Error %) | 222.55 | 222.55 (0%) | 222.56 (0.004%) | 222.57 (0.008%) |
1st Lead–lag frequency (Hz) (Error %) | 543.35 | 543.05 (0.005%) | 542.93 (0.007%) | 544.67 (0.24%) |
Material Type | CFRP UD Prepreg, CFRP Woven Prepreg |
---|---|
Stacking sequence | [45/0] s |
Thickness of one lamina | UD: 0.327 mm, Woven: 0.223 mm |
Dimensions of specimen | 13 × 240 mm |
Measured stress at strain of 3000 | 200 MPa |
E1 of UD Lamina (GPa) (Error %) | E2 of UD Lamina (GPa) (Error %) | E1 of Woven Lamina (GPa) | |
---|---|---|---|
Experimental results in [15] | 109 GPa | 7.8 GPa | Not measured |
Properties predicted via the proposed method | 100.13 GPa (8.1%) | 7.3 GPa (6.4%) | 45.56 GPa |
Predicted properties based on CLPT in [15] | 117 GPa (7.3%) | 6.9 GPa (11.5%) | Cannot predict |
Input Properties of the Predicted Lamina | Calculated Properties | ||
---|---|---|---|
E1 of lamina (MPa) | 140,000 | E of carbon fiber (MPa) | 230,000 |
E2 of lamina (MPa) | 8200 | E of resin (MPa) | 4000 |
Volume fraction of lamina (%) | 60% |
Allowance Type | Condition |
---|---|
Material variability | Matrix tensile strength 5% |
Fiber tensile strength 5% | |
Process variability | Fiber volume fraction 10% |
Ply misalignment standard deviation 3° | |
Experimental variability | Coupon misalignment standard deviation 3 |
Material Type | Sensitivity |
---|---|
Matrix tensile strength | 9.63 × 10−1 |
Fiber volume fraction | 1.42 × 10−2 |
Fiber tensile strength | 1.74 × 10−2 |
Coupon misalignment | 5.13 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, M.-Y.; Park, J.H.; Song, J.; Hwang, S.W.; Kang, H.H.; Lee, H.C. Enhanced Reverse-Engineering Method for Accurately Predicting Lamina Properties in Laminated Composites via Combined Static and Dynamic Finite Element Simulations. J. Compos. Sci. 2023, 7, 518. https://doi.org/10.3390/jcs7120518
Hwang M-Y, Park JH, Song J, Hwang SW, Kang HH, Lee HC. Enhanced Reverse-Engineering Method for Accurately Predicting Lamina Properties in Laminated Composites via Combined Static and Dynamic Finite Element Simulations. Journal of Composites Science. 2023; 7(12):518. https://doi.org/10.3390/jcs7120518
Chicago/Turabian StyleHwang, Mun-Young, Jeong Hun Park, Jongho Song, Soo Woong Hwang, Hun Hee Kang, and Hyun Chul Lee. 2023. "Enhanced Reverse-Engineering Method for Accurately Predicting Lamina Properties in Laminated Composites via Combined Static and Dynamic Finite Element Simulations" Journal of Composites Science 7, no. 12: 518. https://doi.org/10.3390/jcs7120518
APA StyleHwang, M. -Y., Park, J. H., Song, J., Hwang, S. W., Kang, H. H., & Lee, H. C. (2023). Enhanced Reverse-Engineering Method for Accurately Predicting Lamina Properties in Laminated Composites via Combined Static and Dynamic Finite Element Simulations. Journal of Composites Science, 7(12), 518. https://doi.org/10.3390/jcs7120518