Self-Healing Nanocomposites—Advancements and Aerospace Applications
Abstract
:1. Introduction
2. Self-Healing Polymer
3. Self-Healing Nanocomposites
4. Self-Healing Nanocomposites for Aerospace
5. Significance of Self-Healing Nanocomposites in Space Sector
5.1. Aerospace Engines
5.2. Space Structures
5.3. Aerospace Fuselage
5.4. Coatings/Adhesives
6. Mechanism of Self-Healing in Space Nanocomposites
7. Prospects and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kordas, G. All-Purpose Nano-and Microcontainers: A Review of the New Engineering Possibilities. Eng 2022, 3, 554–572. [Google Scholar] [CrossRef]
- Reddy, K.R.; El-Zein, A.; Airey, D.W.; Alonso-Marroquin, F.; Schubel, P.; Manalo, A. Self-healing polymers: Synthesis methods and applications. Nano-Struct. Nano-Objects 2020, 23, 100500. [Google Scholar] [CrossRef]
- Nauman, S. Piezoresistive sensing approaches for structural health monitoring of polymer composites—A review. Eng 2021, 2, 197–226. [Google Scholar] [CrossRef]
- Kaddaha, M.A.; Younes, R.; Lafon, P. Homogenization method to calculate the stiffness matrix of laminated composites. Eng 2021, 2, 416–434. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Shen, L.; Zhang, S.; Vessalas, K. Integrated self-sensing and self-healing cementitious composite with microencapsulation of nano-carbon black and slaked lime. Mater. Lett. 2021, 282, 128834. [Google Scholar] [CrossRef]
- Liu, D.; Fan, C.J.; Xiao, Y.; Yang, K.K.; Wang, Y.Z. High strength, self-healing polyurethane elastomer based on synergistic multiple dynamic interactions in multiphase. Polymer 2022, 263, 125513. [Google Scholar] [CrossRef]
- Peng, Y.; Guo, Z. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. J. Mater. Chem. A 2016, 4, 15749–15770. [Google Scholar] [CrossRef]
- Yabuki, A.; Fathona, I.W. Self-healing corrosion protective coatings in transportation industries. In Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 99–133. [Google Scholar]
- Mhlanga, N.; Mphahlele, K. Self-healing Substrates: Fabrication, Properties and Applications. In Self-Standing Substrates; Springer: Berlin/Heidelberg, Germany, 2020; pp. 235–267. [Google Scholar]
- Coope, T.S.; Turkenburg, D.H.; Fischer, H.R.; Luterbacher, R.; Van Bracht, H.; Bond, I.P. Novel Diels-Alder based self-healing epoxies for aerospace composites. Smart Mater. Struct. 2016, 25, 084010. [Google Scholar] [CrossRef] [Green Version]
- Van Mullem, T.; Gruyaert, E.; Caspeele, R.; De Belie, N. First large scale application with self-healing concrete in belgium: Analysis of the laboratory control tests. Materials 2020, 13, 997. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.J.; Susanto, G.J.; Anwar Ali, H.P.; Tee, B.C. Progress and Roadmap for Intelligent Self-Healing Materials in Autonomous Robotics. Adv. Mater. 2021, 33, 2002800. [Google Scholar] [CrossRef]
- Chalapathi, K.V.; Prabhakar, M.; Lee, D.-W.; Song, J.-i. Development of thermoplastic self-healing panels by 3D printing technology and study extrinsic healing system under low-velocity impact analysis. Polym. Test. 2023, 119, 107923. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.; Yaseen, M.; Huang, K. A review on the self-healing ability of epoxy polymers. J. Appl. Polym. Sci. 2021, 138, 50260. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M.Á.; Santana, M.H. The final frontier of sustainable materials: Current developments in self-healing elastomers. Int. J. Mol. Sci. 2022, 23, 4757. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, E.; Liu, J.; Qin, J.; Wu, M.; Yang, C.; Liang, L. Self-healing, reprocessable, degradable, thermadapt shape memory multifunctional polymers based on dynamic imine bonds and their application in nondestructively recyclable carbon fiber composites. Chem. Eng. J. 2023, 454, 139992. [Google Scholar] [CrossRef]
- Kim, Y.N.; Jeong, H.; Ryu, S.; Jung, Y.C. Self-Healing Polymers and Composites for Additive Manufacturing: Materials, Properties, and Applications. In Nanotechnology-Based Additive Manufacturing: Product Design, Properties and Applications; Wiley Online Library: New York, NY, USA, 2023; Volume 1, pp. 219–248. [Google Scholar]
- Fatahi, A.; Mohammadi, A.; Sarfjoo, M.R. 16 Polymers for Smart Coatings. In Specialty Polymers: Fundamentals, Properties, Applications and Advances; CRC Press: Boca Raton, FL, USA, 2023; p. 233. [Google Scholar]
- Pezzin, S.H. Mechanism of Extrinsic and Intrinsic Self-healing in Polymer Systems. In Multifunctional Epoxy Resins: Self-Healing, Thermally and Electrically Conductive Resins; Springer: Berlin/Heidelberg, Germany, 2023; pp. 107–138. [Google Scholar]
- Klingler, W.W.; Bifulco, A.; Polisi, C.; Huang, Z.; Gaan, S. Recyclable inherently flame-retardant thermosets: Chemistry, properties and applications. Compos. Part B Eng. 2023, 110667. [Google Scholar] [CrossRef]
- Parameswaran, B.; Singha, N.K. Self-Healing Composites: Capsule-and Vascular-Based Extrinsic Self-Healing Systems. In Toughened Composites; CRC Press: Boca Raton, FL, USA, 2022; pp. 203–216. [Google Scholar]
- Wemyss, A.M.; Ellingford, C.; Morishita, Y.; Bowen, C.; Wan, C. Dynamic polymer networks: A new avenue towards sustainable and advanced soft machines. Angew. Chem. Int. Ed. 2021, 60, 13725–13736. [Google Scholar] [CrossRef]
- Paolillo, S.; Bose, R.K.; Santana, M.H.; Grande, A.M. Intrinsic self-healing epoxies in polymer matrix composites (PMCs) for aerospace applications. Polymers 2021, 13, 201. [Google Scholar] [CrossRef] [PubMed]
- Ekeocha, J.; Ellingford, C.; Pan, M.; Wemyss, A.M.; Bowen, C.; Wan, C. Challenges and Opportunities of Self-Healing Polymers and Devices for Extreme and Hostile Environments. Adv. Mater. 2021, 33, 2008052. [Google Scholar] [CrossRef]
- Aly, A.A.; Zeidan, E.-S.B.; Alshennawy, A.A.; El-Masry, A.A.; Wasel, W.A. Friction and wear of polymer composites filled by nano-particles: A review. World J. Nano Sci. Eng. 2012, 2, 32. [Google Scholar] [CrossRef] [Green Version]
- Sahmaran, M.; Yildirim, G.; Erdem, T.K. Self-healing capability of cementitious composites incorporating different supplementary cementitious materials. Cem. Concr. Compos. 2013, 35, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, M.; Kumar, L.R.; Khan, A.; Asiri, A.M. Self-healing polymer composites and its chemistry. In Self-Healing Composite Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 415–427. [Google Scholar]
- Khan, M.; Shah, L.A.; Khan, M.A.; Khattak, N.S.; Zhao, H. Synthesis of an un-modified gum arabic and acrylic acid based physically cross-linked hydrogels with high mechanical, self-sustainable and self-healable performance. Mater. Sci. Eng. C 2020, 116, 111278. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Guan, Q.; Liu, Y.; Sun, X.; Wen, Z. Abrasion and Fracture Self-Healable Triboelectric Nanogenerator with Ultrahigh Stretchability and Long-Term Durability. Adv. Funct. Mater. 2021, 31, 2105380. [Google Scholar] [CrossRef]
- Ouni, S.; Askri, D.; Jeljeli, M.; Abdelmalek, H.; Sakly, M.; Amara, S. Toxicity and effects of copper oxide nanoparticles on cognitive performances in rats. Arch. Environ. Occup. Health 2019, 75, 384–394. [Google Scholar] [CrossRef]
- Feng, X.; Li, G. Room-Temperature Self-Healable and Mechanically Robust Thermoset Polymers for Healing Delamination and Recycling Carbon Fibers. ACS Appl. Mater. Interfaces 2021, 13, 53099–53110. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Urban, M.W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Erice, A.; de Luzuriaga, A.R.; Azcune, I.; Fernandez, M.; Calafel, I.; Grande, H.-J.; Rekondo, A. New injectable and self-healable thermoset polythiourethane based on S-aromatic thiourethane dissociative exchange mechanism. Polymer 2020, 196, 122461. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Jung, J.; Suh, E.H.; Yun, D.J.; Oh, J.G.; Jang, J. Self-healable and stretchable organic thermoelectric materials: Electrically percolated polymer nanowires embedded in thermoplastic elastomer matrix. Adv. Funct. Mater. 2020, 30, 1905809. [Google Scholar] [CrossRef]
- Xie, J.; Fan, L.; Yao, D.; Su, F.; Mu, Z.; Zheng, Y. Ultra-robust, self-healable and recyclable polyurethane elastomer via a combination of hydrogen bonds, dynamic chemistry, and microphase separation. Mater. Today Chem. 2022, 23, 100708. [Google Scholar] [CrossRef]
- Liu, M.; Zhong, J.; Li, Z.; Rong, J.; Yang, K.; Zhou, J.; Shen, L.; Gao, F.; Huang, X.; He, H. A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding. Eur. Polym. J. 2020, 124, 109475. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, J.; Lyu, B.; Ma, J.; Yang, Z. Polyacrylate crosslinked with furyl alcohol grafting bismaleimide: A self-healing polymer coating. Prog. Org. Coat. 2020, 139, 105475. [Google Scholar] [CrossRef]
- Lin, C.; Ge, H.; Wang, T.; Huang, M.; Ying, P.; Zhang, P.; Wu, J.; Ren, S.; Levchenko, V. A self-healing and recyclable polyurethane/halloysite nanocomposite based on thermoreversible Diels-Alder reaction. Polymer 2020, 206, 122894. [Google Scholar] [CrossRef]
- Postiglione, G.; Turri, S.; Levi, M. Effect of the plasticizer on the self-healing properties of a polymer coating based on the thermoreversible Diels–Alder reaction. Prog. Org. Coat. 2015, 78, 526–531. [Google Scholar] [CrossRef]
- Cui, J.; Ma, Z.; Pan, L.; An, C.-H.; Liu, J.; Zhou, Y.-F.; Li, Y.-S. Self-healable gradient copolymers. Mater. Chem. Front. 2019, 3, 464–471. [Google Scholar] [CrossRef]
- Hao, S.; Li, T.; Yang, X.; Song, H. Ultrastretchable, Adhesive, Fast Self-Healable, and Three-Dimensional Printable Photoluminescent Ionic Skin Based on Hybrid Network Ionogels. ACS Appl. Mater. Interfaces 2021, 14, 2029–2037. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, L.; Urban, M.W. Probing Molecular Events in Self-Healable Polymers. Spectrosc. Tech. Polym. Charact. Methods Instrum. Appl. 2021, 345–366. [Google Scholar] [CrossRef]
- Wang, D.; Ren, S.; Chen, J.; Li, Y.; Wang, Z.; Xu, J.; Jia, X.; Fu, J. Healable, highly thermal conductive, flexible polymer composite with excellent mechanical properties and multiple functionalities. Chem. Eng. J. 2021, 430, 133163. [Google Scholar] [CrossRef]
- Kasak, P.; Hrobárik, P.; Osička, J.; Soláriková, D.; Horváth, B.; Tkac, J.; Sadasivuni, K.K.; AlMaadeed, M.A.; Mikláš, R. Nicotinamide-based supergelator self-assembling via asymmetric hydrogen bonding NH⋯ OC and H⋯ Br− pattern for reusable, moldable and self-healable nontoxic fuel gels. J. Colloid Interface Sci. 2021, 603, 182–190. [Google Scholar] [CrossRef]
- Kee, J.; Ahn, H.; Park, H.; Seo, Y.-S.; Yeo, Y.H.; Park, W.H.; Koo, J. Stretchable and Self-Healable Poly (styrene-co-acrylonitrile) Elastomer with Metal–Ligand Coordination Complexes. Langmuir 2021, 37, 13998–14005. [Google Scholar] [CrossRef]
- Bahrani, S.; Mousavi, S.M.; Hashemi, S.A.; Lai, C.W.; Chiang, W.H. Self-Healable Core–Shell Nanofibers. Self-Health Smart Mater. Allied Appl. 2021, 181–202. [Google Scholar] [CrossRef]
- Lee, K.; Cavazos, C.G.; Rouse, J.; Wei, X.; Li, M.; Wei, S. Advanced Micro/Nanocapsules for Self-healing Smart Anticorrosion Coatings: A Review of Recent Developments. In Corrosion Protection of Metals and Alloys Using Graphene and Biopolymer Based Nanocomposites; 2021; pp. 169–190. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781315171364-12/advanced-micro-nanocapsules-self-healing-smart-anticorrosion-coatings-kayla-lee-cynthia-cavazos-jacob-rouse-xin-wei-mei-li-suying-wei (accessed on 10 March 2023).
- Kopeć, M.; Szczepanowicz, K.; Mordarski, G.; Podgórna, K.; Socha, R.; Nowak, P.; Warszyński, P.; Hack, T. Self-healing epoxy coatings loaded with inhibitor-containing polyelectrolyte nanocapsules. Prog. Org. Coat. 2015, 84, 97–106. [Google Scholar] [CrossRef]
- Jin, H.; Miller, G.M.; Sottos, N.R.; White, S.R. Fracture and fatigue response of a self-healing epoxy adhesive. Polymer 2011, 52, 1628–1634. [Google Scholar] [CrossRef]
- Ubaid, F.; Radwan, A.B.; Naeem, N.; Shakoor, R.; Ahmad, Z.; Montemor, M.; Kahraman, R.; Abdullah, A.M.; Soliman, A. Multifunctional self-healing polymeric nanocomposite coatings for corrosion inhibition of steel. Surf. Coat. Technol. 2019, 372, 121–133. [Google Scholar] [CrossRef]
- Matyjaszewski, K. Advanced materials by atom transfer radical polymerization. Adv. Mater. 2018, 30, 1706441. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Liu, L.; Chen, Q.; Zhang, Q.; Guo, G. Tough, stretchable, compressive novel polymer/graphene oxide nanocomposite hydrogels with excellent self-healing performance. ACS Appl. Mater. Interfaces 2017, 9, 38052–38061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-L.; Su, J.-F.; Guo, Y.-D.; Wang, X.-Y.; Fang, Y.; Ding, Z.; Han, N.-X. Novel vascular self-nourishing and self-healing hollow fibers containing oily rejuvenator for bitumen. Constr. Build. Mater. 2018, 183, 150–162. [Google Scholar] [CrossRef]
- Su, J.-F.; Zhang, X.-L.; Guo, Y.-D.; Wang, X.-F.; Li, F.-L.; Fang, Y.; Ding, Z.; Han, N.-X. Experimental observation of the vascular self-healing hollow fibers containing rejuvenator states in bitumen. Constr. Build. Mater. 2019, 201, 715–727. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, S.; Wu, Y.; Guan, T.; Sun, N.; Ren, B. Self-healing UV light-curable resins containing disulfide group: Synthesis and application in UV coatings. Prog. Org. Coat. 2019, 133, 289–298. [Google Scholar] [CrossRef]
- Zou, C.; Chen, C. Polar-functionalized, crosslinkable, self-healing, and photoresponsive polyolefins. Angew. Chem. Int. Ed. 2020, 59, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.K. Self-Healing Materials: Fundamentals, Design Strategies, and Applications; Wiley Online Library: Hoboken, NJ, USA, 2009. [Google Scholar]
- Scheiner, M.; Dickens, T.J.; Okoli, O. Progress towards self-healing polymers for composite structural applications. Polymer 2016, 83, 260–282. [Google Scholar] [CrossRef]
- Huynh, T.P.; Haick, H. Autonomous flexible sensors for health monitoring. Adv. Mater. 2018, 30, 1802337. [Google Scholar] [CrossRef]
- Huynh, T.-P.; Haick, H. Self-healing materials for analyte sensing. In Nanomaterials Design for Sensing Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 325–339. [Google Scholar]
- Zhang, H.; Di, Y.; Yang, Q.; Zhou, X. Composites of Layered Double Hydroxide Nanosheets, Hydroxy-Functionalized Carbon Nanotubes, and Hydroxyapatite Nanoparticles as Flame Retardants for Epoxy Resins. ACS Appl. Nano Mater. 2021, 4, 11753–11762. [Google Scholar] [CrossRef]
- Ma, H.; Aravand, M.A.; Falzon, B.G. Influence on fracture toughness arising from controlled morphology of multiphase toughened epoxy resins in the presence of fibre reinforcement. Compos. Sci. Technol. 2022, 217, 109095. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, Y.; Fu, X.; Jiang, L.; Yuan, A.; Xu, H.; Wei, Z.; Lei, Y.; Lei, J. A permanent covalent bond-crosslinked thermosetting polymer with room-temperature autonomous self-healing performance. New J. Chem. 2021, 45, 21742–21749. [Google Scholar] [CrossRef]
- Xie, L.; Wang, Y.; Chen, G.; Feng, H.; Zheng, N.; Ren, H.; Zhao, Q.; Xie, T. A thermadapt epoxy based on borate ester crosslinking and its carbon fiber composite as rapidly processable prepreg. Compos. Commun. 2021, 28, 100979. [Google Scholar] [CrossRef]
- Kausar, A. Self-healing aeronautical nanocomposites. In Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications; Elsevier: Amsterdam, The Netherlands, 2022; p. 263. [Google Scholar]
- Yang, Y.; Dang, Z.M.; Li, Q.; He, J. Self-healing of electrical damage in polymers. Adv. Sci. 2020, 7, 2002131. [Google Scholar] [CrossRef]
- Nodehi, M.; Ozbakkaloglu, T.; Gholampour, A. A systematic review of bacteria-based self-healing concrete: Biomineralization, mechanical, and durability properties. J. Build. Eng. 2022, 49, 104038. [Google Scholar] [CrossRef]
- Kontiza, A.; Semitekolos, D.; Milickovic, T.K.; Pappas, P.; Koutroumanis, N.; Galiotis, C.; Charitidis, C.A. Double cantilever beam test and micro-computed tomography as evaluation tools for self-healing of CFRPs loaded with DCPD microcapsules. Compos. Struct. 2022, 279, 114780. [Google Scholar] [CrossRef]
- Jeevan Rao, H.; Singh, S.; Janaki Ramulu, P.; Agarwal, B.K. Characterization Techniques and Evolution of Natural Polymer Nanofiber Composites (NPNFCs): An Extensive Study. Adv. Eng. Mater. 2021, 2020, 173–186. [Google Scholar]
- Wu, X.F.; Rahman, A.; Zhou, Z.; Pelot, D.D.; Sinha-Ray, S.; Chen, B.; Payne, S.; Yarin, A.L. Electrospinning core-shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites. J. Appl. Polym. Sci. 2013, 129, 1383–1393. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, D.; Liu, T.; Liu, Z.; Pu, J.; Liu, W.; Zhao, H.; Li, X.; Wang, L. Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene. Carbon 2019, 142, 164–176. [Google Scholar] [CrossRef]
- Sanka, R.S.P.; Rana, S.; Singh, P.; Mishra, A.K.; Kumar, P.; Singh, M.; Sahoo, N.G.; Binder, W.H.; Yun, G.J.; Park, C. Self-healing nanocomposites via N-doped GO promoted “click chemistry”. Soft Matter 2023, 19, 98–105. [Google Scholar] [CrossRef]
- Pulikkalparambil, H.; Siengchin, S.; Parameswaranpillai, J. Corrosion protective self-healing epoxy resin coatings based on inhibitor and polymeric healing agents encapsulated in organic and inorganic micro and nanocontainers. Nano-Struct. Nano-Objects 2018, 16, 381–395. [Google Scholar] [CrossRef]
- Bhati, M.; Bansal, K.; Rai, R. Capturing thematic intervention of nanotechnology in agriculture sector: A scientometric approach. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; Volume 84, pp. 313–359. [Google Scholar]
- Xu, S.; Zhao, B.; Raza, M.; Li, L.; Wang, H.; Zheng, S. Shape memory and self-healing nanocomposites with POSS–POSS interactions and quadruple hydrogen bonds. ACS Appl. Polym. Mater. 2020, 2, 3327–3338. [Google Scholar] [CrossRef]
- Chen, K.; Liu, H.; Zhou, J.; Sun, Y.; Yu, K. Polyurethane Blended with Silica-Nanoparticle-Modified Graphene as a Flexible and Superhydrophobic Conductive Coating with a Self-Healing Ability for Sensing Applications. ACS Appl. Nano Mater. 2022, 5, 615–625. [Google Scholar] [CrossRef]
- Adelnia, H.; Ensandoost, R.; Moonshi, S.S.; Gavgani, J.N.; Vasafi, E.I.; Ta, H.T. Freeze/thawed Polyvinyl Alcohol Hydrogels: Present, Past and Future. Eur. Polym. J. 2021, 164, 110974. [Google Scholar] [CrossRef]
- Javadian, S.; Ahmadpour, Z.; Yousefi, A. Polypyrrole nanocapsules bearing quaternized alkyl pyridine in a green self-healing coating for corrosion protection of zinc. Prog. Org. Coat. 2020, 147, 105678. [Google Scholar] [CrossRef]
- Mukhopadhay, S.; Bhajiwala, H.; Bhowmick, A.K.; Gupta, V. Emerging Smart Materials: Recent Development in Self-healing Elastomers. Int. J. Compos. Mater. Matrices 2019, 5, 2. [Google Scholar]
- Golovin, K.; Boban, M.; Mabry, J.M.; Tuteja, A. Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Appl. Mater. Interfaces 2017, 9, 11212–11223. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Cao, K.; Chen, M.; Wu, L. Synthesis of UV-responsive self-healing microcapsules and their potential application in aerospace coatings. ACS Appl. Mater. Interfaces 2019, 11, 33314–33322. [Google Scholar] [CrossRef]
- Degtyarev, A.; Lobanov, L.; Kushnar’ov, A.; Baranov, I.Y.; Volkov, V.; Perepichay, A.; Korotenko, V.; Volkova, O.; Osinovyy, G.; Lysenko, Y.A. On possibilities for development of the common-sense concept of habitats beyond the Earth. Acta Astronaut. 2020, 170, 487–498. [Google Scholar] [CrossRef]
- Weiss, P.; Mohamed, M.P.; Gobert, T.; Chouard, Y.; Singh, N.; Chalal, T.; Schmied, S.; Schweins, M.; Stegmaier, T.; Gresser, G.T. Advanced Materials for Future Lunar Extravehicular Activity Space Suit. Adv. Mater. Technol. 2020, 5, 2000028. [Google Scholar] [CrossRef]
- Chen, C.; He, Y.; Xiao, G.; Wu, Y.; He, Z.; Zhong, F. Zirconia doped in carbon fiber by electrospinning method and improve the mechanical properties and corrosion resistance of epoxy. Prog. Org. Coat. 2018, 125, 420–431. [Google Scholar] [CrossRef]
- Pingkarawat, K.; Wang, C.; Varley, R.; Mouritz, A. Self-healing of delamination cracks in mendable epoxy matrix laminates using poly [ethylene-co-(methacrylic acid)] thermoplastic. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1301–1307. [Google Scholar] [CrossRef]
- Sánchez-Romate, X.F.; Sans, A.; Jiménez-Suárez, A.; Prolongo, S.G. The addition of graphene nanoplatelets into epoxy/polycaprolactone composites for autonomous self-healing activation by Joule’s heating effect. Compos. Sci. Technol. 2021, 213, 108950. [Google Scholar] [CrossRef]
- Park, C.; Kim, G.; Jung, J.; Krishnakumar, B.; Rana, S.; Yun, G.J. Enhanced self-healing performance of graphene oxide/vitrimer nanocomposites: A molecular dynamics simulations study. Polymer 2020, 206, 122862. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Chen, P.; Li, Y.; Liu, M.; Gao, T.; Ma, D.; Chen, Y.; Cheng, Z.; Qiu, X. Toward single-layer uniform hexagonal boron nitride–graphene patchworks with zigzag linking edges. Nano Lett. 2013, 13, 3439–3443. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.-e.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Barkan, T. Graphene: The hype versus commercial reality. Nat. Nanotechnol. 2019, 14, 904–906. [Google Scholar] [CrossRef]
- De Luzuriaga, A.R.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodríguez, J.; Odriozola, I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz. 2016, 3, 241–247. [Google Scholar] [CrossRef]
- Poutrel, Q.-A.; Baghdadi, Y.; Souvignet, A.; Gresil, M. Graphene functionalisations: Conserving vitrimer properties towards nanoparticles recovery using mild dissolution. Compos. Sci. Technol. 2021, 216, 109072. [Google Scholar] [CrossRef]
- Krishnakumar, B.; Bose, D.; Singh, M.; Sanka, R.; Gurunadh, V.V.; Singhal, S.; Parthasarthy, V.; Guadagno, L.; Vijayan, P.P.; Thomas, S. Sugarcane Bagasse-Derived Activated Carbon-(AC-) Epoxy Vitrimer Biocomposite: Thermomechanical and Self-Healing Performance. Int. J. Polym. Sci. 2021, 2021, 5561755. [Google Scholar] [CrossRef]
- Yimyai, T.; Crespy, D.; Rohwerder, M. Corrosion-Responsive Self-Healing Coatings. Adv. Mater. 2023, 2300101. [Google Scholar] [CrossRef]
- Krishnakumar, B.; Sanka, R.S.P.; Binder, W.H.; Park, C.; Jung, J.; Parthasarthy, V.; Rana, S.; Yun, G.J. Catalyst free self-healable vitrimer/graphene oxide nanocomposites. Compos. Part B Eng. 2020, 184, 107647. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, D.; Lu, F.; Yuan, W.; Xu, X.; Zhang, Q.; Liu, H.; Shao, Q.; Guo, Z.; Huang, Y. Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host–guest interactions. Macromolecules 2018, 51, 5294–5303. [Google Scholar] [CrossRef]
- Szatkowski, P.; Pielichowska, K.; Blazewicz, S. Mechanical and thermal properties of carbon-nanotube-reinforced self-healing polyurethanes. J. Mater. Sci. 2017, 52, 12221–12234. [Google Scholar] [CrossRef]
- Campanella, A.; Döhler, D.; Binder, W.H. Self-healing in supramolecular polymers. Macromol. Rapid Commun. 2018, 39, 1700739. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Wu, J.; Chen, L.; Huang, H.; Zhang, X.; Zhang, J. Hierarchical Hydrogen Bonds Directed Multi-Functional Carbon Nanotube-Based Supramolecular Hydrogels. Small 2014, 10, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
- Punetha, V.D.; Rana, S.; Yoo, H.J.; Chaurasia, A.; McLeskey Jr, J.T.; Ramasamy, M.S.; Sahoo, N.G.; Cho, J.W. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Prog. Polym. Sci. 2017, 67, 1–47. [Google Scholar] [CrossRef]
- Wang, Y.; Pham, D.T.; Zhang, Z.; Li, J.; Ji, C.; Liu, Y.; Leng, J. Sustainable self-healing at ultra-low temperatures in structural composites incorporating hollow vessels and heating elements. R. Soc. Open Sci. 2016, 3, 160488. [Google Scholar] [CrossRef] [Green Version]
- Sabagh, S.; Azar, A.A.; Bahramian, A.R. High temperature ablation and thermo-physical properties improvement of carbon fiber reinforced composite using graphene oxide nanopowder. Compos. Part A Appl. Sci. Manuf. 2017, 101, 326–333. [Google Scholar] [CrossRef]
- He, Y.; Yang, S.; Liu, H.; Shao, Q.; Chen, Q.; Lu, C.; Jiang, Y.; Liu, C.; Guo, Z. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties. J. Colloid Interface Sci. 2018, 517, 40–51. [Google Scholar] [CrossRef]
- Yuan, Q.; Xu, Z.; Yakobson, B.I.; Ding, F. Efficient defect healing in catalytic carbon nanotube growth. Phys. Rev. Lett. 2012, 108, 245505. [Google Scholar] [CrossRef] [Green Version]
- Murugesan, B.; Pandiyan, N.; Kasinathan, K.; Rajaiah, A.; Arumuga, M.; Subramanian, P.; Sonamuthu, J.; Samayanan, S.; Arumugam, V.R.; Marimuthu, K. Fabrication of heteroatom doped NFP-MWCNT and NFB-MWCNT nanocomposite from imidazolium ionic liquid functionalized MWCNT for antibiofilm and wound healing in Wistar rats: Synthesis, characterization, in-vitro and in-vivo studies. Mater. Sci. Eng. C 2020, 111, 110791. [Google Scholar] [CrossRef] [PubMed]
- Kuang, X.; Liu, G.; Dong, X.; Wang, D. Enhancement of Mechanical and Self-Healing Performance in Multiwall Carbon Nanotube/Rubber Composites via Diels–Alder Bonding. Macromol. Mater. Eng. 2016, 301, 535–541. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Chou, T.W. Carbon nanotube networks: Sensing of distributed strain and damage for life prediction and self healing. Adv. Mater. 2006, 18, 2837–2841. [Google Scholar] [CrossRef]
- Guadagno, L.; Vertuccio, L.; Naddeo, C.; Barra, G.; Raimondo, M.; Sorrentino, A.; Binder, W.H.; Michael, P.; Rana, S.; Calabrese, E. Functional structural nanocomposites with integrated self-healing ability. Mater. Today Proc. 2021, 34, 243–249. [Google Scholar] [CrossRef]
- Beneš, H.; Popelková, D.; Šturcová, A.; Popelka, S.t.p.n.; Jůza, J.; Pop-Georgievski, O.; Konefał, M.; Hrubý, M. Aqueous-based functionalizations of titanate nanotubes: A straightforward route to high-performance epoxy composites with interfacially bonded nanofillers. Macromolecules 2018, 51, 5989–6002. [Google Scholar] [CrossRef]
- Jiang, M.; Zhou, H.; Cheng, X. Effect of rare earth surface modification of carbon nanotubes on enhancement of interfacial bonding of carbon nanotubes reinforced epoxy matrix composites. J. Mater. Sci. 2019, 54, 10235–10248. [Google Scholar] [CrossRef]
- Dey, D.; De, D.; Ghaemi, F.; Ahmadian, A.; Abdullah, L.C. Circuit level modeling of electrically doped adenine–thymine nanotube based field effect transistor. IEEE Access 2019, 8, 6168–6176. [Google Scholar] [CrossRef]
- Guadagno, L.; Vertuccio, L.; Naddeo, C.; Calabrese, E.; Barra, G.; Raimondo, M.; Sorrentino, A.; Binder, W.; Michael, P.; Rana, S. Self-healing epoxy nanocomposites via reversible hydrogen bonding. Compos. Part B Eng. 2019, 157, 1–13. [Google Scholar] [CrossRef]
- Es’haghi, Z.; Rezaeifar, Z.; Rounaghi, G.-H.; Nezhadi, Z.A.; Golsefidi, M.A. Synthesis and application of a novel solid-phase microextraction adsorbent: Hollow fiber supported carbon nanotube reinforced sol–gel for determination of phenobarbital. Anal. Chim. Acta 2011, 689, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Henson, G.M.; Wabel, T.M.; Sullivan-Lewis, E.; Tai, S.; Goyal, V.K.; Strizzi, J. Applications of Ceramic Matrix Composites in Liquid Rocket Propulsion. In Book Applications of Ceramic Matrix Composites in Liquid Rocket Propulsion; 2023; p. 1837. Available online: https://arc.aiaa.org/doi/10.2514/6.2023-1837 (accessed on 10 March 2023).
- Das, T.K.; Ghosh, P.; Das, N.C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review. Adv. Compos. Hybrid Mater. 2019, 2, 214–233. [Google Scholar] [CrossRef]
- Korniejenko, K.; Kozub, B.; Bąk, A.; Balamurugan, P.; Uthayakumar, M.; Furtos, G. Tackling the Circular Economy Challenges—Composites Recycling: Used Tyres, Wind Turbine Blades, and Solar Panels. J. Compos. Sci. 2021, 5, 243. [Google Scholar] [CrossRef]
- Castaing, V.; Giordano, L.; Richard, C.; Gourier, D.; Allix, M.; Viana, B. Photochromism and Persistent Luminescence in Ni-Doped ZnGa2O4 Transparent Glass-Ceramics: Toward Optical Memory Applications. J. Phys. Chem. C 2021, 125, 10110–10120. [Google Scholar] [CrossRef]
- Zhang, L.M.; He, Y.; Cheng, S.; Sheng, H.; Dai, K.; Zheng, W.J.; Wang, M.X.; Chen, Z.S.; Chen, Y.M.; Suo, Z. Self-Healing, Adhesive, and Highly Stretchable Ionogel as a Strain Sensor for Extremely Large Deformation. Small 2019, 15, 1804651. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, T.; Li, H.-N.; Cong, H.-P.; Antonietti, M.; Yu, S.-H. Dynamic Au-thiolate interaction induced rapid self-healing nanocomposite hydrogels with remarkable mechanical behaviors. Chem 2017, 3, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.T.; Takahashi, T.; Okawa, A.; Suematsu, H.; Niihara, K.; Nakayama, T. Improving self-healing ability and flexural strength of ytterbium silicate-based nanocomposites with silicon carbide nanoparticulates and whiskers. J. Ceram. Soc. Jpn. 2021, 129, 209–216. [Google Scholar] [CrossRef]
- Greil, P. Self-Healing Engineering Ceramics with Oxidation-Induced Crack Repair. Adv. Eng. Mater. 2020, 22, 1901121. [Google Scholar] [CrossRef] [Green Version]
- Balitskii, O.; Kvasnytska, Y.H.; Ivaskevych, L.; Mialnitsa, H.; Kvasnytska, K. Fatigue Fracture of the Blades of Gas-Turbine Engines Made of a New Refractory Nickel Alloy. Mater. Sci. 2022, 57, 475–483. [Google Scholar] [CrossRef]
- De Castilho, B.C.N.M.; Rodrigues, A.M.; Avila, P.R.T.; Apolinario, R.C.; Nossa, T.d.S.; Walczak, M.; Fernandes, J.V.; Menezes, R.R.; de Araújo Neves, G.; Pinto, H.C. Hybrid magnetron sputtering of ceramic superlattices for application in a next generation of combustion engines. Sci. Rep. 2022, 12, 2342. [Google Scholar] [CrossRef]
- Tong, Y.-Q.; Shi, Q.-S.; Liu, M.-J.; Li, G.-R.; Li, C.-J.; Yang, G.-J. Lightweight epoxy-based abradable seal coating with high bonding strength. J. Mater. Sci. Technol. 2021, 69, 129–137. [Google Scholar] [CrossRef]
- Ostapiuk, M.; Loureiro, M.V.; Bieniaś, J.; Marques, A.C. Interlaminar shear strength study of Mg and carbon fiber-based hybrid laminates with self-healing microcapsules. Compos. Struct. 2021, 255, 113042. [Google Scholar] [CrossRef]
- Jhanji, K.P.; Asokan, R.; Kumar, R.A.; Sarkar, S. The flexural properties of self healing fiber reinforced polymer composites. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; p. 052022. [Google Scholar]
- Luan, C.; Yao, X.; Zhang, C.; Fu, J.; Wang, B. Integrated self-monitoring and self-healing continuous carbon fiber reinforced thermoplastic structures using dual-material three-dimensional printing technology. Compos. Sci. Technol. 2020, 188, 107986. [Google Scholar] [CrossRef]
- Banerjee, P.; Kumar, S.; Bose, S. Thermoreversible bonds and graphene oxide additives enhance the flexural and interlaminar shear strength of self-healing epoxy/carbon fiber laminates. ACS Appl. Nano Mater. 2021, 4, 6821–6831. [Google Scholar] [CrossRef]
- Parsaee, S.; Mirabedini, S.M.; Farnood, R.; Alizadegan, F. Development of self-healing coatings based on urea-formaldehyde/polyurethane microcapsules containing epoxy resin. J. Appl. Polym. Sci. 2020, 137, 49663. [Google Scholar] [CrossRef]
- Kessler, M.; Sottos, N.; White, S. Self-healing structural composite materials. Compos. Part A Appl. Sci. Manuf. 2003, 34, 743–753. [Google Scholar] [CrossRef]
- Sharon, M. Stealth, Counter Stealth and Nanotechnology. In Nanotechnology in the Defense Industry: Advances, Innovation, and Practical Applications; 2019; pp. 37–88. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119460503 (accessed on 10 March 2023).
- Williams, G.; Trask, R.; Bond, I. A self-healing carbon fibre reinforced polymer for aerospace applications. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1525–1532. [Google Scholar] [CrossRef]
- Guadagno, L.; Longo, P.; Raimondo, M.; Naddeo, C.; Mariconda, A.; Sorrentino, A.; Vittoria, V.; Iannuzzo, G.; Russo, S. Cure behavior and mechanical properties of structural self-healing epoxy resins. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 2413–2423. [Google Scholar] [CrossRef]
- Teoh, S.; Chia, H.; Lee, M.; Nasyitah, A.; Luqman, H.; Nurhidayah, S.; Tan, W.C. Self healing composite for aircraft’s structural application. Int. J. Mod. Phys. B 2010, 24, 157–163. [Google Scholar] [CrossRef]
- Coope, T.S.; Wass, D.F.; Trask, R.S.; Bond, I.P. Metal Triflates as Catalytic Curing Agents in Self-Healing Fibre Reinforced Polymer Composite Materials. Macromol. Mater. Eng. 2014, 299, 208–218. [Google Scholar] [CrossRef] [Green Version]
- Toohey, K.S.; Sottos, N.R.; Lewis, J.A.; Moore, J.S.; White, S.R. Self-healing materials with microvascular networks. Nat. Mater. 2007, 6, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Reddy, K.M.; Kumar, A.; Devi, G.R. Development and characterization of polymer–ceramic continuous fiber reinforced functionally graded composites for aerospace application. Aerosp. Sci. Technol. 2013, 26, 185–191. [Google Scholar] [CrossRef]
- Dong, T.; Kim, N.H. Cost-effectiveness of structural health monitoring in fuselage maintenance of the civil aviation industry. Aerospace 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Xue, P.; Ding, L.; Qiao, F.; Yu, X. Crashworthiness study of a civil aircraft fuselage section. Lat. Am. J. Solids Struct. 2014, 11, 1615–1627. [Google Scholar] [CrossRef] [Green Version]
- Riccio, A.; Saputo, S.; Sellitto, A.; Russo, A.; Di Caprio, F.; Di Palma, L. An insight on the crashworthiness behavior of a full-scale composite fuselage section at different impact angles. Aerospace 2019, 6, 72. [Google Scholar] [CrossRef] [Green Version]
- Mou, H.; Xie, J.; Feng, Z. Research status and future development of crashworthiness of civil aircraft fuselage structures: An overview. Prog. Aerosp. Sci. 2020, 119, 100644. [Google Scholar] [CrossRef]
- Wang, D.; Li, S. Collaborative optimization design of lightweight and crashworthiness of the front-end structures of automobile body using HW–GRA for Pareto mining. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 5201–5215. [Google Scholar] [CrossRef]
- Ikumapayi, O.M.; Akinlabi, E.T. Efficacy of α-β grade titanium alloy powder (Ti–6Al–2Sn–2Zr–2Mo–2Cr–0.25 Si) in surface modification and corrosion mitigation in 3.5% NaCl on friction stir processed armour grade 7075-T651 aluminum alloys—Insight in defence applications. Mater. Res. Express 2019, 6, 076546. [Google Scholar] [CrossRef]
- Lee, M.W. Prospects and future directions of self-healing fiber-reinforced composite materials. Polymers 2020, 12, 379. [Google Scholar] [CrossRef] [Green Version]
- Bond, I.P.; Trask, R.S.; Williams, H.R. Self-healing fiber-reinforced polymer composites. MRS Bull. 2008, 33, 770–774. [Google Scholar] [CrossRef]
- Francesconi, A.; Giacomuzzo, C.; Grande, A.; Mudric, T.; Zaccariotto, M.; Etemadi, E.; Di Landro, L.; Galvanetto, U. Comparison of self-healing ionomer to aluminium-alloy bumpers for protecting spacecraft equipment from space debris impacts. Adv. Space Res. 2013, 51, 930–940. [Google Scholar] [CrossRef]
- Seitz, A.; Habermann, A.L.; Peter, F.; Troeltsch, F.; Castillo Pardo, A.; Della Corte, B.; Van Sluis, M.; Goraj, Z.; Kowalski, M.; Zhao, X. Proof of concept study for fuselage boundary layer ingesting propulsion. Aerospace 2021, 8, 16. [Google Scholar] [CrossRef]
- Balakrishnan, P.; John, M.J.; Pothen, L.; Sreekala, M.; Thomas, S. Natural fibre and polymer matrix composites and their applications in aerospace engineering. In Advanced Composite Materials for Aerospace Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 365–383. [Google Scholar]
- Tailor, R.B.; Ramachandran, M.; Raichurkar, P. Review on non-woven polymeric gaskets their characteristics and applications. Int. J. Text. Eng. Process 2017, 3, 14–21. [Google Scholar]
- Hamdy, A.S.; Doench, I.; Möhwald, H. Assessment of a one-step intelligent self-healing vanadia protective coatings for magnesium alloys in corrosive media. Electrochim. Acta 2011, 56, 2493–2502. [Google Scholar] [CrossRef]
- Ramesh, M.; Ramnath, R.A.; Khan, A.; Khan, A.A.P.; Asiri, A.M. Electrically conductive self-healing materials: Preparation, properties, and applications. In Self-Healing Composite Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–13. [Google Scholar]
- Kovalev, I.V.; Voroshilova, A.A. Overview of the International Conference “Advanced Technologies in Aerospace, Mechanical and Automation Engineering–MIST: Aerospace-II”. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; p. 011001. [Google Scholar]
- Yang, Z.; Wei, Z.; Le-ping, L.; Hong-mei, W.; Wu-jun, L. The self-healing composite anticorrosion coating. Phys. Procedia 2011, 18, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Abidi, M.H.; Ali, N.; Ibrahimi, H.; Anjum, S.; Bajaj, D.; Siddiquee, A.N.; Alkahtani, M.; Rehman, A.U. T-FSW of Dissimilar Aerospace Grade Aluminium Alloys: Influence of Second Pass on Weld Defects. Metals 2020, 10, 525. [Google Scholar] [CrossRef] [Green Version]
- Pandian, V.; Kannan, S. Numerical prediction and experimental investigation of aerospace-grade dissimilar aluminium alloy by friction stir welding. J. Manuf. Process. 2020, 54, 99–108. [Google Scholar] [CrossRef]
- Rebillat, F. Advances in self-healing ceramic matrix composites. In Advances in Ceramic Matrix Composites; Elsevier: Amsterdam, The Netherlands, 2014; pp. 475–514. [Google Scholar]
- Yabuki, A.; Urushihara, W.; Kinugasa, J.; Sugano, K. Self-healing properties of TiO2 particle–polymer composite coatings for protection of aluminum alloys against corrosion in seawater. Mater. Corros. 2011, 62, 907–912. [Google Scholar] [CrossRef]
- Ahmadi, Z. Nanostructured epoxy adhesives: A review. Prog. Org. Coat. 2019, 135, 449–453. [Google Scholar] [CrossRef]
- Aradhana, R.; Mohanty, S.; Nayak, S.K. Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. Polymer 2018, 141, 109–123. [Google Scholar] [CrossRef]
- Jojibabu, P.; Zhang, Y.; Prusty, B.G. A review of research advances in epoxy-based nanocomposites as adhesive materials. Int. J. Adhes. Adhes. 2020, 96, 102454. [Google Scholar] [CrossRef]
- Jin, H.; Miller, G.M.; Pety, S.J.; Griffin, A.S.; Stradley, D.S.; Roach, D.; Sottos, N.R.; White, S.R. Fracture behavior of a self-healing, toughened epoxy adhesive. Int. J. Adhes. Adhes. 2013, 44, 157–165. [Google Scholar] [CrossRef]
- Ciampa, F.; Mahmoodi, P.; Pinto, F.; Meo, M. Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors 2018, 18, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meure, S.; Wu, D.Y.; Furman, S. Polyethylene-co-methacrylic acid healing agents for mendable epoxy resins. Acta Mater. 2009, 57, 4312–4320. [Google Scholar] [CrossRef]
- Hu, L.; Li, M.; Xu, C.; Luo, Y.; Zhou, Y. A polysilazane coating protecting polyimide from atomic oxygen and vacuum ultraviolet radiation erosion. Surf. Coat. Technol. 2009, 203, 3338–3343. [Google Scholar] [CrossRef]
- Goyal, M.; Agarwal, S.N.; Bhatnagar, N. A review on self-healing polymers for applications in spacecraft and construction of roads. J. Appl. Polym. Sci. 2022, 139, e52816. [Google Scholar] [CrossRef]
- Thakur, S. Sustainable nanostructural materials for shape memory, self-healing, and self-cleaning applications. In Dynamics of Advanced Sustainable Nanomaterials and Their Related Nanocomposites at the Bio-Nano Interface; Elsevier: Amsterdam, The Netherlands, 2019; pp. 235–250. [Google Scholar]
- Guadagno, L.; Vertuccio, L.; Naddeo, C.; Calabrese, E.; Barra, G.; Raimondo, M.; Sorrentino, A.; Binder, W.H.; Michael, P.; Rana, S. Reversible self-healing carbon-based nanocomposites for structural applications. Polymers 2019, 11, 903. [Google Scholar] [CrossRef] [Green Version]
- Barbaz-Isfahani, R.; Saber-Samandari, S.; Salehi, M. Experimental and numerical research on healing performance of reinforced microcapsule-based self-healing polymers using nanoparticles. J. Reinf. Plast. Compos. 2023, 42, 95–109. [Google Scholar] [CrossRef]
- Yuan, W.; Shen, Y.; Wang, B.; Li, J.; Liu, L.; Huang, Y.; Hu, Z. Ultrafast Self-Healing Fiber/Matrix Composite with Single-Component Microcapsules Loaded with Cationic Catalyst. ACS Appl. Polym. Mater. 2023, 5, 2016–2025. [Google Scholar] [CrossRef]
- Rumon, M.M.H.; Sarkar, S.D.; Alam, M.M.; Roy, C.K. Nanomaterials for Self-Healing Hydrogels. Emerg. Appl. Nanomater. 2023, 141, 270–293. [Google Scholar]
- Ghorbanpour Arani, A.; Miralaei, N.; Farazin, A.; Mohammadimehr, M. An extensive review of the repair behavior of smart self-healing polymer matrix composites. J. Mater. Res. 2023, 38, 617–632. [Google Scholar] [CrossRef]
- An, Z.-W.; Ye, K.; Xue, R.; Zhao, H.; Liu, Y.; Li, P.; Chen, Z.; Huang, C.; Hu, G.-H. Recent advances in self-healing polyurethane based on dynamic covalent bonds combining with other self-healing methods. Nanoscale 2023. [Google Scholar] [CrossRef]
- Deng, C.; Dong, H.; Kou, Y.; Liu, H.; Sun, K.; Jian, W.; Shi, Q. Flexible self-healing phase change film with high transition enthalpy for thermal management. J. Energy Storage 2023, 62, 106873. [Google Scholar] [CrossRef]
- Neal, J.A.; Mozhdehi, D.; Guan, Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J. Am. Chem. Soc. 2015, 137, 4846–4850. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Tikhani, F.; Hampp, N.; Yazdi, D.A.; Zarrintaj, P.; Ganjali, M.R.; Saeb, M.R. Highly curable self-healing vitrimer-like cellulose-modified halloysite nanotube/epoxy nanocomposite coatings. Chem. Eng. J. 2020, 396, 125196. [Google Scholar] [CrossRef]
- Sanka, R.; Krishnakumar, B.; Leterrier, Y.; Pandey, S.; Rana, S.; Michaud, V. Soft self-healing nanocomposites. Front. Mater. 2019, 6, 137. [Google Scholar] [CrossRef]
- Jony, B.; Thapa, M.; Mulani, S.B.; Roy, S. Repeatable self-healing of thermosetting fiber reinforced polymer composites with thermoplastic healant. Smart Mater. Struct. 2019, 28, 025037. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, B.; Yin, D.; Wei, J.; Wang, Z.; Xiong, R.; Shi, J.; Liu, Z.; Lei, Q. Flexible self-healing nanocomposites for recoverable motion sensor. Nano Energy 2015, 17, 1–9. [Google Scholar] [CrossRef]
- Zhou, J.; Han, P.; Liu, M.; Zhou, H.; Zhang, Y.; Jiang, J.; Liu, P.; Wei, Y.; Song, Y.; Yao, X. Self-Healable Organogel Nanocomposite with Angle-Independent Structural Colors. Angew. Chem. Int. Ed. 2017, 56, 10462–10466. [Google Scholar] [CrossRef]
- Jia, Z.; Xiong, P.; Shi, Y.; Zhou, W.; Cheng, Y.; Zheng, Y.; Xi, T.; Wei, S. Inhibitor encapsulated, self-healable and cytocompatible chitosan multilayer coating on biodegradable Mg alloy: A pH-responsive design. J. Mater. Chem. B 2016, 4, 2498–2511. [Google Scholar] [CrossRef]
- Steyer, T.E. Shaping the future of ceramics for aerospace applications. Int. J. Appl. Ceram. Technol. 2013, 10, 389–394. [Google Scholar] [CrossRef]
- Tao, F.; Qin, L.; Wang, Z.; Pan, Q. Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte. ACS Appl. Mater. Interfaces 2017, 9, 15541–15548. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Feng, X.; Wang, W.; OuYang, Q.; Liu, L. Effective interlaminar reinforcing and delamination monitoring of carbon fibrous composites using a novel nano-carbon woven grid. Compos. Sci. Technol. 2021, 213, 108959. [Google Scholar] [CrossRef]
- Han, J.; Wang, H.; Yue, Y.; Mei, C.; Chen, J.; Huang, C.; Wu, Q.; Xu, X. A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network. Carbon 2019, 149, 1–18. [Google Scholar] [CrossRef]
- Guo, P.; Su, A.; Wei, Y.; Liu, X.; Li, Y.; Guo, F.; Li, J.; Hu, Z.; Sun, J. Healable, highly conductive, flexible, and nonflammable supramolecular ionogel electrolytes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 19413–19420. [Google Scholar] [CrossRef] [PubMed]
- Tessler, A. Structural analysis methods for structural health management of future aerospace vehicles. In Key Engineering Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2007; pp. 57–66. [Google Scholar]
- Fujii, K. Progress and future prospects of CFD in aerospace—Wind tunnel and beyond. Prog. Aerosp. Sci. 2005, 41, 455–470. [Google Scholar] [CrossRef]
- Li, H.; Cui, Y.; Wang, H.; Zhu, Y.; Wang, B. Preparation and application of polysulfone microcapsules containing tung oil in self-healing and self-lubricating epoxy coating. Colloids Surf. A Physicochem. Eng. Asp. 2017, 518, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Lorwanishpaisarn, N.; Srikhao, N.; Jetsrisuparb, K.; Knijnenburg, J.T.; Theerakulpisut, S.; Okhawilai, M.; Kasemsiri, P. Self-healing ability of epoxy vitrimer nanocomposites containing bio-based curing agents and carbon nanotubes for corrosion protection. J. Polym. Environ. 2022, 30, 472–482. [Google Scholar] [CrossRef]
- Jing, T.; Heng, X.; Guifeng, X.; Li, L.; Li, P.; Guo, X. Rapid self-healing and tough polyurethane based on the synergy of multi-level hydrogen and disulfide bonds for healing propellant microcracks. Mater. Chem. Front. 2022, 6, 1161–1171. [Google Scholar] [CrossRef]
- Mou, H.; Xie, J.; Liu, Y.; Cheng, K.; Feng, Z. Impact test and numerical simulation of typical sub-cargo fuselage section of civil aircraft. Aerosp. Sci. Technol. 2020, 107, 106305. [Google Scholar] [CrossRef]
Sample | Self-Healing Efficiencies (%)/Recovered Tensile Stress (MPa) | |||||
---|---|---|---|---|---|---|
Heating (120 °C) | Photothermal Effect (NIR, 2 W) | |||||
5 Min | 15 Min | 30 Min | 1 Min | 5 Min | 10 Min | |
EAG-5 | 17.3/4.1 | 33.4/7.8 | 37.0/8.7 | −/− | 18.9/4.4 | 23.1/5.4 |
EAG-10 | 33.1/6.9 | 70.5/14.7 | 79.2/16.5 | 22.6/4.7 | 52.8/11.0 | 59.4/12.4 |
EAG-15 | 45.3/6.1 | 73.2/9.9 | 85.1/11.5 | 29.4/4.0 | 55.3/7.5 | 63.4/8.6 |
Specimen Type | Properties | Undamaged (CV%) | Damaged (CV%) | Healed (CV%) |
---|---|---|---|---|
@1700 N | @1700 N | |||
Plain CFRP | Strength (MPa) | 583.3 | 538.6 | – |
% undamaged | 100% | 92% | – | |
Composite | Strength (MPa) | 568.8 | 490.1 | 523.4 |
% undamaged | 98% | 84% | 90% |
Aerospace Matrix | Nanocarbon/ Healing Agent | Processing | Self-Healing | Mechanical Properties | Ref. |
---|---|---|---|---|---|
Epoxy | Polyethylene-co-methacrylic acid nanocapsule | In situ technique | Healing at 150 °; damage recovery | Scratch protection of 99% | [78] |
Epoxy/polycaprolactone | Graphene | Mechanical mixing; sonication | Self-healing activation by Joule’s heating effect; healing efficiencies of 40–70% | Storage modulus 20% drop at 60 °C | [86] |
Vitrimer epoxy | Graphene oxide | Simulations | Molecular dynamics simulations | Stress–strain studies; crosslinking maintained at 0.5–1.0 strain | [87] |
Vitrimer epoxy | Graphene oxide | Solution dispersion | Self-healing efficiency ~90% | Flexural modulus before healing of 31.7 MPa; after healing of 34.7 MPa | [95] |
Epoxy | Carbon nanotube sheet | Hand-lay up | Healing efficiency; mechanical properties; fracture energy recovery of 108%; peak load recovery of 96% | Fracture toughness ~1783–2077 N mm | [101] |
Epoxy | Thymine and barbiturate functional carbon nanotube | Ultrasonication | Hydrogen bonding; damage repair; self-healing efficiency of 45% | Storage modulus increase with nanofiller loading at 1900–2300 °C | [108] |
Tetraglycidyl methylene dianiline modified with carboxyl-terminated butadiene acrylonitrile, 1,4-butanedioldiglycidyl-ether, and 4,4′-diaminodiphenyl sulfone | Barbiturate modified multiwalled carbon nanotube | Solution; ultrasonication | Reversible hydrogen bonding | Storage modulus increase with nanofiller loading >1100 MPA | [112] |
Diglycidyl ether of bisphenol A epoxy | Carbon fiber/graphene oxide | Vacuum-assisted resin transfer molding | Thermo-reversible bonds | Flexural strength of 652–723 MPa | [128] |
Epoxy | Polysulfone microcapsule with tung oil | Solution mixing; solvent evaporation | Microcapsule 9–100 μm; reversible physical/chemical interaction | Wear rate of 13.10 × 10−14 m3/Nm | [175] |
Vitrimer epoxy | Carbon nanotube | Solution mixing; doctor blading | Self-healing of corrosion damage; interaction/crosslinking; self-healing efficiency of 94–97% | Modulus increase with nanofiller contents of 5773–8602 MPa | [176] |
Epoxy | Carbon fiber/nanocarbon | Hand lay-up; compression molding | Recovery of 40–80% | No crack progression; fracture toughness 2.79–3.58 MPa m1/2 | [177] |
Epoxy | Carbon fiber/carbon nanotube | Three-frame; two-span manufactured | Self-healing impact damage >92% | Young’s modulus of 72 GB; yield stress of 441 GB | [178] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kausar, A.; Ahmad, I.; Maaza, M.; Bocchetta, P. Self-Healing Nanocomposites—Advancements and Aerospace Applications. J. Compos. Sci. 2023, 7, 148. https://doi.org/10.3390/jcs7040148
Kausar A, Ahmad I, Maaza M, Bocchetta P. Self-Healing Nanocomposites—Advancements and Aerospace Applications. Journal of Composites Science. 2023; 7(4):148. https://doi.org/10.3390/jcs7040148
Chicago/Turabian StyleKausar, Ayesha, Ishaq Ahmad, Malik Maaza, and Patrizia Bocchetta. 2023. "Self-Healing Nanocomposites—Advancements and Aerospace Applications" Journal of Composites Science 7, no. 4: 148. https://doi.org/10.3390/jcs7040148
APA StyleKausar, A., Ahmad, I., Maaza, M., & Bocchetta, P. (2023). Self-Healing Nanocomposites—Advancements and Aerospace Applications. Journal of Composites Science, 7(4), 148. https://doi.org/10.3390/jcs7040148