Enhancing Mechanical Properties of 3D-Printed PLAs via Optimization Process and Statistical Modeling
Abstract
:1. Introduction
2. Methodology
2.1. Response Surface Method
2.2. Experimental Work
3. Results and Discussion
4. Discussion
4.1. Surface Roughness (SR)
4.2. Failure Load (FL)
4.3. Sample Weight (SW)
4.4. Build Time (BT)
5. Optimization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gopinathan, J.; Noh, I. Recent trends in bioinks for 3D printing. Biomater. Res. 2018, 22, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawood, A.; Marti, B.M.; Sauret-Jackson, V.; Darwood, A. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Shahrubudin, N.; Lee, T.C.; Ramlan, R. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Oropallo, W.; Piegl, L.A. Ten challenges in 3D printing. Eng. Comput. 2016, 32, 135–148. [Google Scholar] [CrossRef]
- Campbell, T.; Williams, C.; Ivanova, O.; Garrett, B. Could 3D Printing Change the World. Technologies, Potential, and Implications of Additive Manufacturing; Atlantic Council: Washington, DC, USA, 2011; p. 3. [Google Scholar]
- Chimene, D.; Lennox, K.K.; Kaunas, R.R.; Gaharwar, A.K. Advanced bioinks for 3D printing: A materials science perspective. Ann. Biomed. Eng. 2016, 44, 2090–2102. [Google Scholar] [CrossRef]
- Vukicevic, M.; Mosadegh, B.; Min, J.K.; Little, S.H. Cardiac 3D printing and its future directions. JACC Cardiovasc. Imaging 2017, 10, 171–184. [Google Scholar] [CrossRef]
- Mpofu, T.P.; Mawere, C.; Mukosera, M. The Impact and Application of 3D Printing Technology. Mater. Sci. 2014, 8, 2014675. [Google Scholar]
- Moradi, M.; Karami Moghadam, M.; Shamsborhan, M.; Bodaghi, M.; Falavandi, H. Post-processing of FDM 3D-printed polylactic acid parts by laser beam cutting. Polymers 2020, 12, 550. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.A.; Olawuni, D.; Kimbell, G.; Badruddoza, A.Z.M.; Hossain, M.; Sultana, T. Polymers for extrusion-based 3D printing of pharmaceuticals: A holistic materials–process perspective. Pharmaceutics 2020, 12, 124. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A review of 3D printing technology for medical applications. Engineering 2018, 4, 729–742. [Google Scholar] [CrossRef]
- Ford, S.; Minshall, T. Invited review article: Where and how 3D printing is used in teaching and education. Addit. Manuf. 2019, 25, 131–150. [Google Scholar] [CrossRef]
- Rogers, H.; Braziotis, C.; Pawar, K.S. Special issue on 3D printing: Opportunities and applications for supply chain management. Int. J. Phys. Distrib. Logist. Manag. 2017. [CrossRef] [Green Version]
- Vanderploeg, A.; Lee, S.E.; Mamp, M. The application of 3D printing technology in the fashion industry. Int. J. Fash. Des. Technol. Educ. 2017, 10, 170–179. [Google Scholar] [CrossRef]
- Leite, M.; Fernandes, J.; Deus, A.M.; Reis, L.; Vaz, M.F. Study of the influence of 3D printing parameters on the mechanical properties of PLA. In Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), Singapore, 14–17 May 2018; pp. 547–552. [Google Scholar]
- Camargo, J.C.; Machado, Á.R.; Almeida, E.C.; Silva, E.F.M.S. Mechanical properties of PLA-graphene filament for FDM 3D printing. Int. J. Adv. Manuf. Technol. 2019, 103, 2423–2443. [Google Scholar] [CrossRef]
- Lee, J.Y.; An, J.; Chua, C.K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Hodder, K.J.; Nychka, J.A.; Chalaturnyk, R.J. Process limitations of 3D printing model rock. Prog. Addit. Manuf. 2018, 3, 173–182. [Google Scholar] [CrossRef]
- Sanatgar, R.H.; Campagne, C.; Nierstrasz, V. Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Appl. Surf. Sci. 2017, 403, 551–563. [Google Scholar] [CrossRef]
- Candi, M.; Beltagui, A. Effective use of 3D printing in the innovation process. Technovation 2019, 80, 63–73. [Google Scholar] [CrossRef]
- Roopavath, U.K.; Malferrari, S.; Van Haver, A.; Verstreken, F.; Rath, S.N.; Kalaskar, D.M. Optimization of extrusion based ceramic 3D printing process for complex bony designs. Mater. Des. 2019, 162, 263–270. [Google Scholar] [CrossRef]
- Yadav, D.; Chhabra, D.; Garg, R.K.; Ahlawat, A.; Phogat, A. Optimization of FDM 3D printing process parameters for multi-material using artificial neural network. Mater. Today: Proc. 2020, 21, 1583–1591. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Reinicke, T. On the environmental impacts of 3D printing technology. Appl. Mater. Today 2020, 20, 100689. [Google Scholar] [CrossRef]
- Xia, M.; Sanjayan, J.G. Methods of enhancing strength of geopolymer produced from powder-based 3D printing process. Mater. Lett. 2018, 227, 281–283. [Google Scholar] [CrossRef]
- Heidari-Rarani, M.; Rafiee-Afarani, M.; Zahedi, A.M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos. Part B Eng. 2019, 175, 107147. [Google Scholar] [CrossRef]
- Beltrán, F.R.; Arrieta, M.P.; Moreno, E.; Gaspar, G.; Muneta, L.M.; Carrasco-Gallego, R.; Yáñez, S.; Hidalgo-Carvajal, D.; de la Orden, M.U.; Martínez Urreaga, J. Technical evaluation of mechanical recycling of PLA 3D printing wastes. Polymers 2021, 13, 1247. [Google Scholar] [CrossRef]
- Hanon, M.M.; Marczis, R.; Zsidai, L. Influence of the 3D printing process settings on tensile strength of PLA and HT-PLA. Period. Polytech. Mech. Eng. 2021, 65, 38–46. [Google Scholar] [CrossRef]
- Afonso, J.A.; Alves, J.L.; Caldas, G.; Gouveia, B.P.; Santana, L.; Belinha, J. Influence of 3D printing process parameters on the mechanical properties and mass of PLA parts and predictive models. Rapid Prototyp. J. 2021, 27, 487–495. [Google Scholar] [CrossRef]
- Moradi, M.; Karami Moghadam, M.; Shamsborhan, M.; Bodaghi, M. The synergic effects of FDM 3D printing parameters on mechanical behaviors of bronze poly lactic acid composites. J. Compos. Sci. 2020, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Moradi, M.; Falavandi, H.; Karami Moghadam, M.; Shaikh Mohammad Meiabadi, M. Experimental investigation of laser cutting post process of additive manufactured parts of Poly Lactic Acid (PLA) by 3D printers using FDM method. Modares Mech. Eng. 2020, 20, 999–1009. [Google Scholar]
- Jackson, B.; Fouladi, K.; Eslami, B. Multi-Parameter Optimization of 3D Printing Condition for Enhanced Quality and Strength. Polymers 2022, 14, 1586. [Google Scholar] [CrossRef]
- Ferretti, P.; Leon-Cardenas, C.; Santi, G.M.; Sali, M.; Ciotti, E.; Frizziero, L.; Liverani, A. Relationship between FDM 3D printing parameters study: Parameter optimization for lower defects. Polymers 2021, 13, 2190. [Google Scholar] [CrossRef]
- Khuri, A.I.; Mukhopadhyay, S. Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 128–149. [Google Scholar] [CrossRef]
- Myers, R.H.; Khuri, A.I.; Carter, W.H. Response surface methodology: 1966–l988. Technometrics 1989, 31, 137–157. [Google Scholar] [CrossRef]
- Carley, K.M.; Kamneva, N.Y.; Reminga, J. Response Surface Methodology; Carnegie-Mellon Univ Pittsburgh Pa School of Computer Science: Pittsburgh, PA, USA, 2004. [Google Scholar]
- Kleijnen, J.P. Response Surface Methodology; Springer New York: New York, NY, USA, 2015; pp. 81–104. [Google Scholar]
Variable | Symbol | Unit | Levels | ||||
---|---|---|---|---|---|---|---|
2 | 1 | 0 | −1 | −2 | |||
Extruder Temperature | ET | C | 250 | 235 | 220 | 205 | 190 |
Infill Percentage | IP | % | 50 | 42 | 33 | 24 | 10 |
Layer Thickness | LT | mm | 0.35 | 0.30 | 0.25 | 0.20 | 0.15 |
Input | Output | ||||||
---|---|---|---|---|---|---|---|
No. | Infill Percentage (%) | Extruder Temperature (°C) | Layer Thickness (LT) | FL (N) | SW (g) | BT (min) | SR (µm) |
1 | 45 | 235 | 0.15 | 1210 | 27.5 | 47 | 10.852 |
2 | 35 | 220 | 0.25 | 1207 | 27.3 | 47 | 10.605 |
3 | 15 | 220 | 0.20 | 650 | 24.2 | 42 | 13.740 |
4 | 25 | 235 | 0.15 | 790 | 25.3 | 46 | 12.678 |
5 | 50 | 220 | 0.30 | 1218 | 28 | 48 | 10.986 |
6 | 45 | 205 | 0.25 | 1180 | 26.8 | 45 | 10.815 |
7 | 25 | 205 | 0.25 | 772 | 25.1 | 45 | 12.975 |
8 | 25 | 205 | 0.15 | 761 | 25.4 | 44 | 12.354 |
9 | 35 | 250 | 0.35 | 876 | 26.4 | 46 | 11.840 |
10 | 35 | 190 | 0.15 | 845 | 26.1 | 46 | 11.734 |
11 | 50 | 225 | 0.25 | 1150 | 27.5 | 46 | 11.019 |
12 | 10 | 240 | 0.30 | 982 | 26.5 | 44 | 11.472 |
13 | 15 | 235 | 0.25 | 902 | 26.2 | 43 | 11.649 |
14 | 35 | 220 | 0.20 | 1050 | 26.5 | 46 | 10.480 |
15 | 50 | 190 | 0.30 | 1215 | 28.1 | 48 | 10.725 |
16 | 40 | 250 | 0.25 | 1170 | 27.8 | 47 | 11.112 |
17 | 15 | 245 | 0.15 | 898 | 25.2 | 43 | 12.540 |
18 | 25 | 235 | 0.15 | 960 | 26.1 | 45 | 11.680 |
19 | 30 | 230 | 0.25 | 932 | 26.7 | 45 | 11.806 |
20 | 35 | 210 | 0.30 | 940 | 26.5 | 45 | 11.529 |
Feature | Value |
---|---|
Material Name | Poly-lactic acid (PLA) |
Filament Diameter | 1.75 mm |
Tensile Modulus | 3–15 GPa |
Chemical Formula | (C3H4O2)n |
Melting Temperature | 147 °C |
High Hardness | 75 Shore D |
Crystallinity | 35% |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 10,743.68 | 7 | 10,743.68 | 323.12 | <0.0001 | Significant |
A: Infill Percentage | 2321.70 | 1 | 2321.70 | 533.14 | <0.0001 | |
B: Extruder Temperature | 858.00 | 1 | 858.00 | 228.54 | <0.0001 | |
C: Layer Thickness | 687.00 | 1 | 687.00 | |||
AB | 5.00 | 1 | 5.00 | 0.8717 | 0.0038 | |
A² | 0.0065 | 1 | 0.0065 | 0.0026 | 0.0286 | |
B² | 74.23 | 1 | 74.23 | 17.27 | 0.0068 | |
Residual | 24.12 | 5 | 3.64 | |||
Lack of Fit | 3.48 | 1 | 3.48 | 13.68 | 0.02543 | Significant |
Pure Error | 24.30 | 4 | 5.70 | |||
Cor Total | 10,751.00 | 12 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 3.614 × 105 | 3 | 1.205 × 105 | 7.50 | 0.0187 | Significant |
A: Infill Percentage | 3.494 × 105 | 1 | 3.494 × 105 | 21.74 | 0.0035 | |
B: Extruder Temperature | 1653.00 | 1 | 1653.00 | 0.1029 | 0.0593 | |
C: Layer Thickness | 1936.00 | 1 | 1936.00 | 0.254 | 0.0482 | |
AB | 66.77 | 1 | 66.77 | 0.0042 | 0.0507 | |
Residual | 96,425.59 | 6 | 16,070.93 | |||
Lack of Fit | 96,365.09 | 5 | 19,273.02 | 318.56 | 0.0425 | Significant |
Pure Error | 60.50 | 1 | 60.50 | |||
Cor Total | 4.579 × 105 | 9 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 12.52 | 4 | 3.13 | 22.70 | 0.0021 | Significant |
A: Infill Percentage | 11.68 | 1 | 11.68 | 84.73 | 0.0003 | |
B: Extruder Temperature | 0.1885 | 1 | 0.1885 | 1.37 | 0.0049 | |
C: Layer Thickness | 0.2196 | 1 | 0.2196 | 1.85 | 0.0034 | |
A² | 0.5640 | 1 | 0.5640 | 4.09 | 0.0990 | |
B² | 0.3790 | 1 | 0.3790 | 2.75 | 0.0582 | |
Residual | 0.6893 | 5 | 0.1379 | |||
Lack of Fit | 0.6443 | 4 | 0.1611 | 3.58 | 0.0049 | Significant |
Pure Error | 0.0450 | 1 | 0.0450 | |||
Cor Total | 13.21 | 9 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 17.52 | 2 | 8.76 | 6.91 | 0.0022 | Significant |
A: Infill Percentage | 15.88 | 1 | 15.88 | 12.52 | 0.0095 | |
B: Extruder Temperature | 0.9992 | 1 | 0.9992 | 0.7879 | 0.1042 | |
C: Layer Thickness | 928.00 | 1 | 928.00 | 215.51 | <0.0001 | |
Residual | 8.88 | 7 | 1.27 | |||
A² | 0.4442 | 1 | 0.1441 | 3.29 | 0.0781 | |
B² | 0.2580 | 1 | 0.4591 | 1.75 | 0.0432 | |
Lack of Fit | 8.38 | 6 | 1.40 | 2.79 | 0.0582 | Significant |
Pure Error | 0.5000 | 1 | 0.5000 | |||
Cor Total | 26.40 | 9 |
Parameter/Response | Goal | Lower Limit | Upper Limit | Importance | |
---|---|---|---|---|---|
Parameters | IP | In range | 15 | 55 | - |
ET | In range | 190 | 250 | - | |
LT | In range | 0.15 | 0.35 | - | |
Response | FL | Max | 650 | 1218 | 3 |
SW | Min | 24.2 | 28 | 3 | |
BT | Min | 42 | 48 | 3 | |
SR | Max | 10.725 | 13.740 | 3 |
No. | IP (%) | ET (C) | LT (mm) | FL (N) | SW (g) | BT (min) | SR (µm) | |
---|---|---|---|---|---|---|---|---|
1 | 39 | 211 | 25 | Predicted | 796 | 27 | 46 | 10.783 |
Real | 780 | 26.8 | 46 | 10.797 | ||||
2 | 25 | 205 | 25 | Predicted | 785 | 25.3 | 44 | 11.012 |
Real | 798 | 26.4 | 45 | 10.950 | ||||
3 | 35 | 190 | 15 | Predicted | 737 | 25.8 | 45 | 10.943 |
Real | 762 | 26.1 | 44 | 10.932 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahrjerdi, A.; Karamimoghadam, M.; Bodaghi, M. Enhancing Mechanical Properties of 3D-Printed PLAs via Optimization Process and Statistical Modeling. J. Compos. Sci. 2023, 7, 151. https://doi.org/10.3390/jcs7040151
Shahrjerdi A, Karamimoghadam M, Bodaghi M. Enhancing Mechanical Properties of 3D-Printed PLAs via Optimization Process and Statistical Modeling. Journal of Composites Science. 2023; 7(4):151. https://doi.org/10.3390/jcs7040151
Chicago/Turabian StyleShahrjerdi, Ali, Mojtaba Karamimoghadam, and Mahdi Bodaghi. 2023. "Enhancing Mechanical Properties of 3D-Printed PLAs via Optimization Process and Statistical Modeling" Journal of Composites Science 7, no. 4: 151. https://doi.org/10.3390/jcs7040151
APA StyleShahrjerdi, A., Karamimoghadam, M., & Bodaghi, M. (2023). Enhancing Mechanical Properties of 3D-Printed PLAs via Optimization Process and Statistical Modeling. Journal of Composites Science, 7(4), 151. https://doi.org/10.3390/jcs7040151