α-Manganese Dioxide (α-MnO2) Coated with Polyaniline (PANI) and Reduced Graphene Oxide (rGO)-Based Nanocomposite for Supercapacitor Application
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Instruments and Methods
2.3. Synthesis
2.3.1. Synthesis of α-MnO2
2.3.2. Synthesis of PANI
2.3.3. Synthesis of PANI-Coated α-MnO2
2.3.4. rGO Synthesis
2.4. Electrode Fabrication
3. Results and Discussion
3.1. Characterizations
3.1.1. XRD
3.1.2. TGA
3.1.3. IR
3.1.4. Raman Spectroscopy
3.1.5. TEM and FESEM
3.2. Electrochemical Testing
3.2.1. CV
3.2.2. GCD
3.2.3. EIS
3.2.4. Cyclic Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eedulakanti, S.R.; Gampala, A.K.; Rao, K.V.; Chakra, C.S.; Gedela, V.; Boddula, R. Ultrasonication Assisted Thermal Exfoliation of Graphene-Tin Oxide Nanocomposite Material for Supercapacitor. Mater. Sci. Energy Technol. 2019, 2, 372–376. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, G.; Deng, X.; Zou, K.; Xiao, X.; Momen, R.; Massoudi, A.; Deng, W.; Hu, J.; Hou, H.; et al. Ultra-Low-Dose Pre-Metallation Strategy Served for Commercial Metal-Ion Capacitors. Nano-Micro Lett. 2022, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Weerasinghe, W.A.D.S.S.; Vidanapathirana, K.P.; Perera, K.S. Performance Evaluation of Polyaniline-Based Redox Capacitors with Respect to Polymerization Current Density. AIMS Energy 2018, 6, 593–606. [Google Scholar] [CrossRef]
- Patil, V.S.; Thoravat, S.S.; Kundale, S.S.; Dongale, T.D.; Patil, P.S.; Jadhav, S.A. Synthesis and Testing of Polyaniline Grafted Functional Magnetite (Fe3O4) Nanoparticles and RGO Based Nanocomposites for Supercapacitor Application. Chem. Phys. Lett. 2023, 814, 140334. [Google Scholar] [CrossRef]
- Khawas, K.; Kumari, P.; Daripa, S.; Oraon, R.; Kuila, B.K. Hierarchical Polyaniline-MnO2-Reduced Graphene Oxide Ternary Nanostructures with Whiskers-Like Polyaniline for Supercapacitor Application. ChemistrySelect 2017, 2, 11783–11789. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.-K.; Baek, E.; Pecht, M.; Lee, S.-H.; Lee, Y.-H. Improved Performance of Cylindrical Hybrid Supercapacitor Using Activated Carbon/Niobium Doped Hydrogen Titanate. J. Power Sources 2016, 301, 348–354. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, J.H.; Yoon, J.-R. Laser Scribed Graphene Cathode for Next Generation of High Performance Hybrid Supercapacitors. Sci. Rep. 2018, 8, 8179. [Google Scholar] [CrossRef] [PubMed]
- Arslan, A.; Hür, E. Supercapacitor Applications of Polyaniline and Poly(N-Methylaniline) Coated Pencil Graphite Electrode. Int. J. Electrochem. Sci. 2012, 7, 12558–12572. [Google Scholar]
- Beidaghi, M.; Gogotsi, Y. Capacitive Energy Storage in Micro-Scale Devices: Recent Advances in Design and Fabrication of Micro-Supercapacitors. Energy Environ. Sci. 2014, 7, 867. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, R.; Chu, Y.-H.; Yang, W.-D. Facile Fabrication of MnO2/Graphene/Ni Foam Composites for High-Performance Supercapacitors. Nanomaterials 2021, 11, 2736. [Google Scholar] [CrossRef]
- Patil, P.H.; Kulkarni, V.V.; Jadhav, S.A. An Overview of Recent Advancements in Conducting Polymer–Metal Oxide Nanocomposites for Supercapacitor Application. J. Compos. Sci. 2022, 6, 363. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano 2010, 4, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Ates, M.; Yildirim, M. The Synthesis of RGO/RuO2, RGO/PANI, RuO2/PANI and RGO/RuO2/PANI Nanocomposites and Their Supercapacitors. Polym. Bull. 2020, 77, 2285–2307. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; Wu, Q.; Huan, L.; Zhang, X.; Yao, C.; Chen, M. Fabrication of Ternary Hierarchical Nanofibers MnO2/PANI/CNT and Theirs Application in Electrochemical Supercapacitors. Chem. Eng. Sci. 2016, 156, 178–185. [Google Scholar] [CrossRef]
- Hou, Y.; Cheng, Y.; Hobson, T.; Liu, J. Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes. Nano Lett. 2010, 10, 2727–2733. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Hu, L.; Liu, N.; Wang, H.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z. Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping. Nano Lett. 2011, 11, 4438–4442. [Google Scholar] [CrossRef]
- Vignesh, V.; Velusamy, V.; Srinivasan, M.; Nirmala, R.; Ramasamy, P.; Panomsuwan, G.; Navamathavan, R. Thermo-Chemically Functionalized Porous Featured Bio-Carbon Based Asymmetric Supercapacitor for New Limits of Energy Storage. Surf. Interfaces 2022, 35, 102418. [Google Scholar] [CrossRef]
- Vignesh, V.; Subramani, K.; Oh, M.-S.; Sathish, M.; Navamathavan, R. Synthesis of GNS-MnS Hybrid Nanocomposite for Enhanced Electrochemical Energy Storage Applications. Mater. Chem. Phys. 2019, 230, 249–257. [Google Scholar] [CrossRef]
- He, Q.; Liu, J.; Liu, X.; Li, G.; Chen, D.; Deng, P.; Liang, J. A Promising Sensing Platform toward Dopamine Using MnO2 Nanowires/Electro-Reduced Graphene Oxide Composites. Electrochim. Acta 2019, 296, 683–692. [Google Scholar] [CrossRef]
- He, Q.; Liu, J.; Liu, X.; Li, G.; Deng, P.; Liang, J. Manganese Dioxide Nanorods/Electrochemically Reduced Graphene Oxide Nanocomposites Modified Electrodes for Cost-Effective and Ultrasensitive Detection of Amaranth. Colloids Surf. B Biointerfaces 2018, 172, 565–572. [Google Scholar] [CrossRef]
- Amaechi, I.C.; Nwanya, A.C.; Ekwealor, A.B.C.; Asogwa, P.U.; Osuji, R.U.; Maaza, M.; Ezema, F.I. Electronic Thermal Conductivity, Thermoelectric Properties and Supercapacitive Behaviour of Conjugated Polymer Nanocomposite (Polyaniline-WO3) Thin Film. Eur. Phys. J. Appl. Phys. 2015, 69, 30901. [Google Scholar] [CrossRef]
- Kanta, U.; Thongpool, V.; Sangkhun, W.; Wongyao, N.; Wootthikanokkhan, J. Preparations, Characterizations, and a Comparative Study on Photovoltaic Performance of Two Different Types of Graphene/TiO2 Nanocomposites Photoelectrodes. J. Nanomater. 2017, 2017, 2758294. [Google Scholar] [CrossRef]
- Patil, K.T.; Nirmal, K.A.; Jadhav, S.A.; Patil, S.R.; Dongale, T.D.; Kim, D.; Patil, P.S. Bipolar Resistive Switching and Non-Volatile Memory Properties of MnO2-Polyaniline (PANI) Nanocomposite. Materialia 2021, 15, 101026. [Google Scholar] [CrossRef]
- Muthuchudarkodi, R.R.; Vedhi, C. Preparation and Electrochemical Characterization of Manganese Dioxide-Zirconia Nanorods. Appl. Nanosci. 2015, 5, 481–491. [Google Scholar] [CrossRef]
- Lokhande, V.C.; Lokhande, A.C.; Lokhande, C.D.; Kim, J.H.; Ji, T. Supercapacitive Composite Metal Oxide Electrodes Formed with Carbon, Metal Oxides and Conducting Polymers. J. Alloys Compd. 2016, 682, 381–403. [Google Scholar] [CrossRef]
- Mezgebe, M.M.; Xu, K.; Wei, G.; Guang, S.; Xu, H. Polyaniline Wrapped Manganese Dioxide Nanorods: Facile Synthesis and as an Electrode Material for Supercapacitors with Remarkable Electrochemical Properties. J. Alloys Compd. 2019, 794, 634–644. [Google Scholar] [CrossRef]
- Jadhav, S.A.; Dhas, S.D.; Patil, K.T.; Moholkar, A.V.; Patil, P.S. Polyaniline (PANI)-Manganese Dioxide (MnO2) Nanocomposites as Efficient Electrode Materials for Supercapacitors. Chem. Phys. Lett. 2021, 778, 138764. [Google Scholar] [CrossRef]
- Durai, S.C.V.; Prasad, L.G.; Kumar, E.; Muthuraj, D.; Jothy, V.B. Preparation and investigation on electric impedence modules and dielectric properties of polyaniline/Manganese dioxide nanocomposites. Int. J. Creat. Res. Thoughts 2018, 6, 543–547. [Google Scholar]
- Li, H.; He, Y.; Pavlinek, V.; Cheng, Q.; Saha, P.; Li, C. MnO2 Nanoflake/Polyaniline Nanorod Hybrid Nanostructures on Graphene Paper for High-Performance Flexible Supercapacitor Electrodes. J. Mater. Chem. A 2015, 3, 17165–17171. [Google Scholar] [CrossRef]
- Yavuz, S.; Bandaru, P.R. Ag Nanowire Coated Reduced Graphene Oxide/n-Silicon Schottky Junction Based Solar Cell. In Proceedings of the 2016 IEEE Conference on Technologies for Sustainability (SusTech), Phoenix, AZ, USA, 9–11 October 2016; 2016; pp. 265–269. [Google Scholar]
- Dhawale, D.S.; Vinu, A.; Lokhande, C.D. Stable Nanostructured Polyaniline Electrode for Supercapacitor Application. Electrochim. Acta 2011, 56, 9482–9487. [Google Scholar] [CrossRef]
- Hsieh, M.-C.; Chen, B.-H.; Hong, Z.-Y.; Liu, J.-K.; Huang, P.-C.; Huang, C.-M. Fabrication of 5 V High-Performance Solid-State Asymmetric Supercapacitor Device Based on MnO2/Graphene/Ni Electrodes. Catalysts 2022, 12, 572. [Google Scholar] [CrossRef]
- Yu, J.; Fu, N.; Zhao, J.; Liu, R.; Li, F.; Du, Y.; Yang, Z. High Specific Capacitance Electrode Material for Supercapacitors Based on Resin-Derived Nitrogen-Doped Porous Carbons. ACS Omega 2019, 4, 15904–15911. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Li, L.; Fang, P.; Guo, R. Ultrathin MnO2 Nanorods on Conducting Polymer Nanofibers as a New Class of Hierarchical Nanostructures for High-Performance Supercapacitors. J. Phys. Chem. C 2012, 116, 15900–15907. [Google Scholar] [CrossRef]
- Li, J.; Xie, H.; Li, Y.; Liu, J.; Li, Z. Electrochemical Properties of Graphene Nanosheets/Polyaniline Nanofibers Composites as Electrode for Supercapacitors. J. Power Sources 2011, 196, 10775–10781. [Google Scholar] [CrossRef]
- Teli, A.M.; Beknalkar, S.A.; Pawar, S.A.; Dubal, D.P.; Dongale, T.D.; Patil, D.S.; Patil, P.S.; Shin, J.C. Effect of Concentration on the Charge Storage Kinetics of Nanostructured MnO2 Thin-Film Supercapacitors Synthesized by the Hydrothermal Method. Energies 2020, 13, 6124. [Google Scholar] [CrossRef]
Scan Rate (mVs−1) | Specific Capacitance (F g−1) | |||
---|---|---|---|---|
PANI | rGO | α-MnO2/PANI | α-MnO2 /PANI/rGO | |
5 | 604 | 188 | 13 | 261 |
10 | 567 | 152 | 10 | 229 |
20 | 547 | 125 | 7 | 192 |
40 | 523 | 103 | 6 | 158 |
60 | 519 | 88 | 5 | 141 |
80 | 492 | 79 | 4 | 128 |
100 | 443 | 72 | 3 | 117 |
Current Density (mA cm−2) | Specific Capacitance (F g−1) | |||
---|---|---|---|---|
PANI | rGO | α-MnO2/PANI | α-MnO2/PANI/rGO | |
1 | 334 | 51 | 29 | 77 |
2 | 273 | 45 | 24 | 55 |
4 | 198 | 37 | 22 | 37 |
6 | 138 | 33 | 22 | 29 |
8 | 91 | 14 | 21 | 24 |
10 | 55 | 28 | 20 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, P.H.; Kulkarni, V.V.; Dongale, T.D.; Jadhav, S.A. α-Manganese Dioxide (α-MnO2) Coated with Polyaniline (PANI) and Reduced Graphene Oxide (rGO)-Based Nanocomposite for Supercapacitor Application. J. Compos. Sci. 2023, 7, 167. https://doi.org/10.3390/jcs7040167
Patil PH, Kulkarni VV, Dongale TD, Jadhav SA. α-Manganese Dioxide (α-MnO2) Coated with Polyaniline (PANI) and Reduced Graphene Oxide (rGO)-Based Nanocomposite for Supercapacitor Application. Journal of Composites Science. 2023; 7(4):167. https://doi.org/10.3390/jcs7040167
Chicago/Turabian StylePatil, Pranoti H., Vidya V. Kulkarni, Tukaram D. Dongale, and Sushilkumar A. Jadhav. 2023. "α-Manganese Dioxide (α-MnO2) Coated with Polyaniline (PANI) and Reduced Graphene Oxide (rGO)-Based Nanocomposite for Supercapacitor Application" Journal of Composites Science 7, no. 4: 167. https://doi.org/10.3390/jcs7040167
APA StylePatil, P. H., Kulkarni, V. V., Dongale, T. D., & Jadhav, S. A. (2023). α-Manganese Dioxide (α-MnO2) Coated with Polyaniline (PANI) and Reduced Graphene Oxide (rGO)-Based Nanocomposite for Supercapacitor Application. Journal of Composites Science, 7(4), 167. https://doi.org/10.3390/jcs7040167