Effect of Polynorbornene on Physico-Mechanical, Dynamic, and Dielectric Properties of Vulcanizates Based on Isoprene, α-Methylstyrene-Butadiene, and Nitrile-Butadiene Rubbers for Rail Fasteners Pads
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of the Samples
2.3. Curing Characteristics
2.4. Crosslink Density
2.5. Differential Scanning Calorimetry
2.6. Thermogravimetric Analysis (TGA)
2.7. Physico-Mechanical Properties
2.8. Dynamic Mechanical Analysis (DMA)
2.9. Dielectric Properties
3. Results and Discussion
3.1. Curing Characteristics and Crosslink Density
3.2. Thermal Analysis
3.3. Physico-Mechanical Properties
3.4. Dynamic Mechanical Properties
3.5. Dielectric Properties
3.6. Thermal Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaewunruen, S.; Ishida, M.; Marich, S. Dynamic Wheel–Rail Interaction Over Rail Squat Defects. Acoust. Aust. 2015, 43, 97–107. [Google Scholar] [CrossRef]
- Ďungel, J.; Zvolenský, P.; Grenčík, J.; Leštinský, L.; Krivda, J. Localization of Increased Noise at Operating Speed of a Passenger Wagon. Sustainability 2021, 13, 453. [Google Scholar] [CrossRef]
- Tavares de Freitas, R.; Kaewunruen, S. Life Cycle Cost Evaluation of Noise and Vibration Control Methods at Urban Railway Turnouts. Environments 2016, 3, 34. [Google Scholar] [CrossRef]
- Barke, D.W.; Chiu, W.K. A Review of the Effects of Out-Of-Round Wheels on Track and Vehicle Components. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2005, 219, 151–175. [Google Scholar] [CrossRef]
- Kouroussis, G.; Connolly, D.P.; Vogiatzis, K.; Verlinden, O. Modelling the Environmental Effects of Railway Vibrations from Different Types of Rolling Stock: A Numerical Study. Shock Vib. 2015, 2015, 142807. [Google Scholar] [CrossRef]
- Chiacchiari, L.; Loprencipe, G. Measurement methods and analysis tools for rail irregularities: A case study for urban tram track. J. Mod. Transp. 2015, 23, 137–147. [Google Scholar] [CrossRef]
- Colaço, A.; Costa, P.A.; Connolly, D.P. The influence of train properties on railway ground vibrations. Struct. Infrastruct. Eng. 2015, 12, 517–534. [Google Scholar] [CrossRef]
- Hao, Y.; Qi, H.; Liu, S.; Nian, V.; Zhang, Z. Study of Noise and Vibration Impacts to Buildings Due to Urban Rail Transit and Mitigation Measures. Sustainability 2022, 14, 3119. [Google Scholar] [CrossRef]
- Mohamed, A.-M.O.; Paleologos, E.K.; Howar, F.M. Noise pollution and its impact on human health and the environment. In Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering; Butterworth-Heinemann: Oxford, UK, 2021; pp. 975–1026. [Google Scholar] [CrossRef]
- Michali, M.; Emrouznejad, A.; Dehnokhalaji, A.; Clegg, B. Noise-pollution efficiency analysis of European railways: A network DEA model. Transp. Res. Part D Transp. Environ. 2021, 98, 102980. [Google Scholar] [CrossRef]
- Sahu, P.; Galhotra, A.; Raj, U.; Ranjan, R.V. A study of self-reported health problems of the people living near railway tracks in Raipur city. J. Fam. Med. Prim. Care 2020, 9, 740–744. [Google Scholar] [CrossRef]
- Panulinova, E.; Harabinová, S.; Argalášová, L. Tram squealing noise and its impact on human health. Noise Health 2016, 18, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Demir, E.; Huang, Y.; Scholts, S.; Van Woensel, T. A selected review on the negative externalities of the freight transportation: Modeling and pricing. Transp. Res. Part E Logist. Transp. Rev. 2015, 77, 95–114. [Google Scholar] [CrossRef]
- Elmenhorst, E.-M.; Pennig, S.; Rolny, V.; Quehl, J.; Mueller, U.; Maaß, H.; Basner, M. Examining nocturnal railway noise and aircraft noise in the field: Sleep, psychomotor performance, and annoyance. Sci. Total Environ. 2012, 424, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Chen, G.; Lv, J.; Zhu, Q.; Kang, X. Generation mechanism and remedy method of rail corrugation at a sharp curved metro track with Vanguard fasteners. J. Low Freq. Noise Vib. Act. Control 2019, 39, 368–381. [Google Scholar] [CrossRef]
- Liu, L.; Zuo, Z.; Zhou, Y.; Qin, J. Insights into the Effect of WJ-7 Fastener Rubber Pad to Vehicle-Rail-Viaduct Coupled Dynamics. Appl. Sci. 2020, 10, 1889. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.; Le, W.; Zhang, L.; Su, J. Study on mechanical behaviours of rail fasteners and effects on seismic performance of urban rail viaduct. Structures 2021, 33, 3822–3834. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, H.; Liu, W.; Thompson, D.J. Experimental study of the treatment measures for rail corrugation on tracks with Egg fasteners in the Beijing metro. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2017, 232, 1360–1374. [Google Scholar] [CrossRef]
- Xu, J.; Wang, K.; Liang, X.; Gao, Y.; Liu, Z.; Chen, R.; Wang, P.; Xu, F.; Wei, K. Influence of viscoelastic mechanical properties of rail pads on wheel and corrugated rail rolling contact at high speeds. Tribol. Int. 2020, 151, 106523. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Zhao, Y. Fabrication of novel hindered phenol/phenol resin/nitrile butadiene rubber hybrids and their long-period damping properties. Polym. Compos. 2012, 33, 2125–2133. [Google Scholar] [CrossRef]
- Roche, N.; Ichchou, M.N.; Salvia, M.; Chettah, A. Dynamic Damping Properties of Thermoplastic Elastomers Based on EVA and Recycled Ground Tire Rubber. J. Elastomers Plast. 2011, 43, 317–340. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, R.; Wang, M.; Liu, X.; Zhao, X.; Lu, Y.; Feng, A.; Zhang, L. Design and synthesis of phenyl silicone rubber with functional epoxy groups through anionic copolymerization and subsequent epoxidation. Polymer 2020, 186, 122077. [Google Scholar] [CrossRef]
- Sheng, Z.; Yang, S.; Wang, J.; Lu, Y.; Tang, K.; Song, S. Preparation and Properties Analysis of Chlorinated Butyl Rubber (CIIR)/Organic Diatomite Damping Composites. Materials 2018, 11, 2172. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.Q.; Yu, D.Y.; Shao, X.Y.; Zhang, S.Q.; Wang, S. Research and applications of viscoelastic vibration damping materials: A review. Compos. Struct. 2016, 136, 460–480. [Google Scholar] [CrossRef]
- Bielawski, C.W.; Benitez, D.; Morita, T.; Grubbs, R.H. Synthesis of End-Functionalized Poly(norbornene)s via Ring-Opening Metathesis Polymerization. Macromolecules 2001, 34, 8610–8618. [Google Scholar] [CrossRef]
- Frenzel, U.; Nuyken, O. Ruthenium-based metathesis initiators: Development and use in ring-opening metathesis polymerization. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 2895–2916. [Google Scholar] [CrossRef]
- Delaude, L.; Demonceau, A.; Noels, A.F. Probing the Stereoselectivity of the Ruthenium-Catalyzed Ring-Opening Metathesis Polymerization of Norbornene and Norbornadiene Diesters. Macromolecules 2003, 36, 1446–1456. [Google Scholar] [CrossRef]
- Li, L.; Gomes, P.T.; Lemos, M.A.N.D.A.; Lemos, F.; Fan, Z. Polymerisation of Norbornene Catalysed by Highly Active Tetradentate Chelated α-Diimine Nickel Complexes. Macromol. Chem. Phys. 2011, 212, 367–374. [Google Scholar] [CrossRef]
- Bogdanova, Y.G.; Dolzhikova, V.D.; Tikhonov, N.A.; Gringol’ts, M.L.; Kostina, Y.V.; Alent’ev, A.Y. The effect of trimethylsilyl substituents in the monomer unit on the energy characteristics of surfaces of polynorbornenes obtained via metathesis polymerization. Polym. Sci. Ser. A 2013, 55, 471–479. [Google Scholar] [CrossRef]
- Bishop, J.P.; Register, R.A. The crystal-crystal transition in hydrogenated ring-opened polynorbornenes: Tacticity, crystal thickening, and alignment. J. Polym. Sci. Part B Polym. Phys. 2010, 49, 68–79. [Google Scholar] [CrossRef]
- Leimgruber, S.; Trimmel, G. Olefin metathesis meets rubber chemistry and technology. Monatsh. Chem. 2015, 146, 1081–1097. [Google Scholar] [CrossRef]
- Yang, Z.; Han, C.D. Synthesis of hydrogenated functional polynorbornene (HFPNB) and rheology of HFPNB-based miscible blends with hydrogen bonding. Polymer 2008, 49, 5128–5136. [Google Scholar] [CrossRef]
- Nickel, A.; Edgecombe, B.D. Industrial Applications of ROMP. In Polymer Science: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2012; pp. 749–759. [Google Scholar]
- Qu, M.; Ma, Y.; Li, C.; Shi, X. Investigation of the properties of polynorbornene rubber/EPDM blends. J. Elastomers Plast. 2016, 49, 560–573. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, K.P.; Giri, A.; Singh, S.P. Transport mechanism and diffusion kinetics of kerosene through polynorbornene rubber/natural rubber blends. Polym. Bull. 2022, 79, 5305–5325. [Google Scholar] [CrossRef]
- Yalçınkaya, E.E. Polynorbornene/MMT nanocomposites via surface-initiated ROMP: Synthesis, characterization, and dielectric and thermal properties. J. Mater. Sci. 2013, 49, 749–757. [Google Scholar] [CrossRef]
- Xu, J.; Li, A.; Wang, H.; Shen, Y. Dynamic mechanical analysis of Norsorex/acrylonitrile butadiene rubber blends and their application in vibration control of steel frames. Adv. Mech. Eng. 2016, 8, 1687814016662561. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J. Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity. J. Chem. Phys. 1943, 11, 512–520. [Google Scholar] [CrossRef]
- Kim, D.Y.; Park, J.W.; Lee, D.Y.; Seo, K.H. Correlation between the Crosslink Characteristics and Mechanical Properties of Natural Rubber Compound via Accelerators and Reinforcement. Polymers 2020, 12, 2020. [Google Scholar] [CrossRef]
- Mohamad Aini, N.; Othman, N.; Hussin, M.; Sahakaro, K.; Hayeemasae, N. Hydroxymethylation-Modified Lignin and Its Effectiveness as a Filler in Rubber Composites. Processes 2019, 7, 315. [Google Scholar] [CrossRef]
- Pongdong, W.; Nakason, C.; Kummerlöwe, C.; Vennemann, N. Influence of filler from a renewable resource and silane coupling agent on the properties of epoxidized natural rubber vulcanizates. J. Chem. 2015, 2015, 796459. [Google Scholar] [CrossRef]
- Zeng, W.; Du, Y.; Xue, Y.; Frisch, H.L. Solubility Parameters. In Physical Properties of Polymers Handbook; Mark, J.E., Ed.; Springer: New York, NY, USA, 2007; pp. 289–303. [Google Scholar] [CrossRef]
- van Krevelen, D.W.; Nijenhuis, K.T. Properties of Polymers. In Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier: Amsterdam, The Netherlands, 2009; 1004p. [Google Scholar]
- Gronski, W.; Hoffmann, U.; Simon, G.; Wutzler, A.; Straube, E. Structure and Density of Crosslinks in Natural-Rubber Vulcanizates. A Combined Analysis by NMR Spectroscopy, Mechanical Measurements, and Rubber-Elastic Theory. Rubber Chem. Technol. 1992, 65, 63–77. [Google Scholar] [CrossRef]
- Marzocca, A.J.; Rodríguez Garraza, A.L.; Mansilla, M.A. Evaluation of the polymer–solvent interaction parameter χ for the system cured polybutadiene rubber and toluene. Polym. Test. 2010, 29, 119–126. [Google Scholar] [CrossRef]
- Sae-oui, P.; Sirisinha, C.; Wantana, T.; Hatthapanit, K. Influence of silica loading on the mechanical properties and resistance to oil and thermal aging of CR/NR blends. J. Appl. Polym. Sci. 2007, 104, 3478–3483. [Google Scholar] [CrossRef]
- Mansilla, M.A.; Marzocca, A.J.; Macchi, C.; Somoza, A. Influence of vulcanization temperature on the cure kinetics and on the microstructural properties in natural rubber/styrene-butadiene rubber blends prepared by solution mixing. Eur. Polym. J. 2015, 69, 50–61. [Google Scholar] [CrossRef]
- Ago, M.; Jakes, J.E.; Rojas, O.J. Thermomechanical Properties of Lignin-Based Electrospun Nanofibers and Films Reinforced with Cellulose Nanocrystals: A Dynamic Mechanical and Nanoindentation Study. ACS Appl. Mater. Interfaces 2013, 5, 11768–11776. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Shinozaki, D.M. Temperature Dependent Viscoelastic Properties of Polymers Investigated by Small-Scale Dynamic Mechanical Analysis. Exp. Mech. 2010, 50, 71–77. [Google Scholar] [CrossRef]
- Moradi, G.; Nassiri, P.; Ershad-Langroudi, A.; Monazzam, M.R. Acoustical, damping and thermal properties of polyurethane/poly(methyl methacrylate)-based semi-interpenetrating polymer network foams. Plast. Rubber Compos. 2018, 47, 221–231. [Google Scholar] [CrossRef]
- Kablov, E.N.; Sagomonova, V.A.; Sorokin, A.E.; Tselikin, V.V.; Gulyaev, A.I. A Study of the Structure and Properties of Polymer Composite Materials with Integrated Vibration Absorbing Layer. Polym. Sci. Ser. D 2020, 13, 335–340. [Google Scholar] [CrossRef]
- Egorov, E.N.; Ushmarin, N.F.; Sandalov, S.I.; Kol’tsov, N.I. Research of operational and dynamic properties of rubber for products working in sea water. ChemChemTech Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2020, 63, 96–102. [Google Scholar] [CrossRef]
- Egorov, E.N.; Ushmarin, N.F.; Sandalov, S.I.; Kol’tsov, N.I.; Voronchikhin, V.D. Investigation of the dynamic properties of seawater-resistant rubber. J. Sib. Fed. Univ. Chem. 2021, 14, 38–44. [Google Scholar] [CrossRef]
- Ushmarin, N.F.; Egorov, E.N.; Grigor’ev, V.S.; Sandalov, S.I.; Kol’tsov, N.I. Influence of Chlorobutyl Caoutchouc on the Dynamic Properties of a Rubber Based on General-Purpose Caoutchoucs. Russ. J. Gen. Chem. 2022, 92, 1862–1865. [Google Scholar] [CrossRef]
- Sharifi, M.J.; Ghalehkhondabi, V.; Fazlali, A. Investigation of the underwater sound absorption and damping properties of polyurethane elastomer. J. Therm. Anal. Calorim. 2022, 147, 4113–4118. [Google Scholar] [CrossRef]
Rubbers and Additives | Content (phr *) for Various Samples | ||||
---|---|---|---|---|---|
PB-1 | PB-2 | PB-3 | PB-4 | PB-5 | |
SKI-3 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 |
SKMS-30ARK | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 |
NBR 2655 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 |
Curing agents | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 |
Vulcanization accelerators | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 |
Vulcanization activators | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 |
Antioxidants | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
Fillers | 88.0 | 88.0 | 88.0 | 88.0 | 88.0 |
Modifier | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Softener | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Scorch retarder | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
RC | – | 15.0 | 30.0 | 45.0 | 60.0 |
Characteristics | Samples | ||||
---|---|---|---|---|---|
PB-1 | PB-2 | PB-3 | PB-4 | PB-5 | |
ML, dN·m | 10.21 | 7.79 | 5.62 | 4.58 | 3.92 |
MH, dN·m | 47.51 | 39.33 | 31.02 | 24.40 | 20.07 |
∆M, dN·m | 37.30 | 30.17 | 25.40 | 19.82 | 16.15 |
ts, min | 2.94 | 3.70 | 4.58 | 6.15 | 7.14 |
t90, min | 16.12 | 16.22 | 17.58 | 18.73 | 18.90 |
Characteristics | Samples | ||||
---|---|---|---|---|---|
PB-1 | PB-2 | PB-3 | PB-4 | PB-5 | |
νr | 0.409 ± 0.001 | 0.381 ± 0.001 | 0.342 ± 0.001 | 0.328 ± 0.001 | 0.306 ± 0.001 |
Mc × 10−3, g/mol | 1.186 ± 0.009 | 1.460 ± 0.006 | 1.999 ± 0.016 | 2.239 ± 0.010 | 2.722 ± 0.012 |
νc × 104, mol/cm3 | 3.922 ± 0.030 | 3.189 ± 0.012 | 2.328 ± 0.019 | 2.079 ± 0.009 | 1.709 ± 0.007 |
Characteristics | Samples | ||||
---|---|---|---|---|---|
PB-1 | PB-2 | PB-3 | PB-4 | PB-5 | |
f100, MPa | 9.0 ± 0.3 | 7.1 ± 0.2 | 6.4 ± 0.2 | 5.2 ± 0.2 | 4.8 ± 0.2 |
fp, MPa | 18.4 ± 0.6 | 17.9 ± 0.6 | 16.8 ± 0.6 | 16.3 ± 0.5 | 15.9 ± 0.5 |
εp, % | 240 ± 9 | 310 ± 12 | 370 ± 14 | 410 ± 16 | 430 ± 17 |
H, a.u. Shore A | 85 ± 1 | 83 ± 1 | 80 ± 1 | 75 ± 1 | 70 ± 1 |
B, kN·m–1 | 59 ± 2 | 56 ± 2 | 51 ± 2 | 49 ± 2 | 47 ± 2 |
RSC at 30% compression(100 °C, 24 h), % | 31.9 ± 0.7 | 32.8 ± 0.6 | 32.6 ± 0.6 | 32.2 ± 0.7 | 33.9 ± 0.7 |
α, m3·TJ–1 | 51.2 ± 2.5 | 53.9 ± 2.6 | 56.6 ± 2.8 | 59.1 ± 2.9 | 63.7 ± 3.1 |
Sample | Peak 1 | Peak 2 | Peak 3 | |||
---|---|---|---|---|---|---|
tanδmax | Tg, °C | tanδmax | Tg, °C | tanδmax | Tg, °C | |
PB-1 | 0.405 | −51.8 | 0.326 | −7.0 | – | – |
PB-2 | 0.350 | −49.7 | 0.310 | −10.1 | 0.231 | 31.3 |
PB-3 | 0.358 | −51.1 | 0.330 | −13.3 | 0.295 | 21.4 |
PB-4 | 0.328 | −47.2 | 0.312 | −9.7 | 0.349 | 20.8 |
PB-5 | 0.258 | −48.2 | 0.298 | −15.2 | 0.419 | 11.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egorov, E.N.; Salomatina, E.V.; Vassilyev, V.R.; Bannov, A.G.; Sandalov, S.I. Effect of Polynorbornene on Physico-Mechanical, Dynamic, and Dielectric Properties of Vulcanizates Based on Isoprene, α-Methylstyrene-Butadiene, and Nitrile-Butadiene Rubbers for Rail Fasteners Pads. J. Compos. Sci. 2023, 7, 334. https://doi.org/10.3390/jcs7080334
Egorov EN, Salomatina EV, Vassilyev VR, Bannov AG, Sandalov SI. Effect of Polynorbornene on Physico-Mechanical, Dynamic, and Dielectric Properties of Vulcanizates Based on Isoprene, α-Methylstyrene-Butadiene, and Nitrile-Butadiene Rubbers for Rail Fasteners Pads. Journal of Composites Science. 2023; 7(8):334. https://doi.org/10.3390/jcs7080334
Chicago/Turabian StyleEgorov, Evgeniy N., Evgeniia V. Salomatina, Vladislav R. Vassilyev, Alexander G. Bannov, and Sergey I. Sandalov. 2023. "Effect of Polynorbornene on Physico-Mechanical, Dynamic, and Dielectric Properties of Vulcanizates Based on Isoprene, α-Methylstyrene-Butadiene, and Nitrile-Butadiene Rubbers for Rail Fasteners Pads" Journal of Composites Science 7, no. 8: 334. https://doi.org/10.3390/jcs7080334
APA StyleEgorov, E. N., Salomatina, E. V., Vassilyev, V. R., Bannov, A. G., & Sandalov, S. I. (2023). Effect of Polynorbornene on Physico-Mechanical, Dynamic, and Dielectric Properties of Vulcanizates Based on Isoprene, α-Methylstyrene-Butadiene, and Nitrile-Butadiene Rubbers for Rail Fasteners Pads. Journal of Composites Science, 7(8), 334. https://doi.org/10.3390/jcs7080334