Predicting Mechanical Properties from Microstructure Images in Fiber-Reinforced Polymers Using Convolutional Neural Networks
Abstract
:1. Introduction
2. Experimental Methods
3. Finite Element Simulation
4. Methodology: Deep Learning Framework
4.1. Data Sampling
4.2. Preprocessing
4.3. Network Architecture
4.4. Network Training
4.5. Evaluation Metrics
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agyei, R.; Hanhan, I.; Sangid, M.D. A data-driven microstructural rationale for micro-void nucleation in discontinuous fiber composites. J. Thermoplast. Compos. Mater. 2023, 36, 1694–1716. [Google Scholar] [CrossRef]
- Materials Genome Initiative for Global Competitiveness; Executive Office of the President, National Science and Technology Council: Washington, DC, USA, 2011.
- Liu, X.; Furrer, D.; Kosters, J.; Holmes, J. Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems; NASA Technical Report: Hampton, VA, USA, 2018. [Google Scholar]
- Kammoun, S.; Doghri, I.; Adam, L.; Robert, G.; Delannay, L. First pseudo-grain failure model for inelastic composites with misaligned short fibers. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1892–1902. [Google Scholar] [CrossRef]
- Aboudi, J. Micromechanical analysis of thermo-inelastic multiphase short-fiber composites. Compos. Eng. 1995, 5, 839–850. [Google Scholar] [CrossRef]
- Poulios, K.; Niordson, C.F. Homogenization of long fiber reinforced composites including fiber bending effects. J. Mech. Phys. Solids 2016, 94, 433–452. [Google Scholar] [CrossRef]
- Fliegener, S.; Luke, M.; Gumbsch, P. 3D microstructure modeling of long fiber reinforced thermoplastics. Compos. Sci. Technol. 2014, 104, 136–145. [Google Scholar] [CrossRef]
- Aboudi, J. Micromechanical analysis of composites by the method of cells. Appl. Mech. Rev. 1989, 42, 193–221. [Google Scholar] [CrossRef]
- Aboudi, J.; Arnold, S.; Bednarcyk, B. The Generalized Method of Cells Micromechanics. Micromechanics of Composite Materials—A Generalized Multiscale Analysis Approach; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Böhm, H.J.; Eckschlager, A.; Han, W. Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput. Mater. Sci. 2002, 25, 42–53. [Google Scholar] [CrossRef]
- Modniks, J.; Andersons, J. Modeling the non-linear deformation of a short-flax-fiber-reinforced polymer composite by orientation averaging. Compos. Part B Eng. 2013, 54, 188–193. [Google Scholar] [CrossRef]
- Sangid, M.D. Coupling in situ experiments and modeling–Opportunities for data fusion, machine learning, and discovery of emergent behavior. Curr. Opin. Solid State Mater. Sci. 2019, 24, 100797. [Google Scholar] [CrossRef]
- Emerson, M.J.; Jespersen, K.M.; Dahl, A.B.; Conradsen, K.; Mikkelsen, L.P. Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials. Compos. Part A Appl. Sci. Manuf. 2017, 97, 83–92. [Google Scholar] [CrossRef]
- Garcea, S.; Sinclair, I.; Spearing, S.; Withers, P. Mapping fibre failure in situ in carbon fibre reinforced polymers by fast synchrotron X-ray computed tomography. Compos. Sci. Technol. 2017, 149, 81–89. [Google Scholar] [CrossRef]
- Emerson, M.J.; Wang, Y.; Withers, P.J.; Conradsen, K.; Dahl, A.B.; Dahl, V.A. Quantifying fibre reorientation during axial compression of a composite through time-lapse X-ray imaging and individual fibre tracking. Compos. Sci. Technol. 2018, 168, 47–54. [Google Scholar] [CrossRef]
- Wang, Y.; Burnett, T.L.; Chai, Y.; Soutis, C.; Hogg, P.J.; Withers, P.J. X-ray computed tomography study of kink bands in unidirectional composites. Compos. Struct. 2017, 160, 917–924. [Google Scholar] [CrossRef]
- Wind, J.L.; Steffensen, S.; Jensen, H.M. Comparison of a composite model and an individually fiber and matrix discretized model for kink band formation. Int. J. Non-Linear Mech. 2014, 67, 319–325. [Google Scholar] [CrossRef]
- Davidson, P.; Waas, A.M. A Micromechanics based model for the prediction of compression fatigue failure of fiber reinforced composites. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; pp. 1420, 2103. [Google Scholar]
- Sato, N.; Kurauchi, T.; Sato, S.; Kamigaito, O. Microfailure behaviour of randomly dispersed short fibre reinforced thermoplastic composites obtained by direct SEM observation. J. Mater. Sci. 1991, 26, 3891–3898. [Google Scholar] [CrossRef]
- Rolland, H.; Saintier, N.; Robert, G. Damage mechanisms in short glass fibre reinforced thermoplastic during in situ microtomography tensile tests. Compos. Part B Eng. 2016, 90, 365–377. [Google Scholar] [CrossRef]
- Hu, X.; Fang, J.; Xu, F.; Dong, B.; Xiao, Y.; Wang, L. Real internal microstructure based key mechanism analysis on the micro-damage process of short fibre-reinforced composites. Sci. Rep. 2016, 6, 34761. [Google Scholar] [CrossRef]
- Hanhan, I.; Agyei, R.F.; Xiao, X.; Sangid, M.D. Predicting Microstructural Void nucleation in Discontinuous fiber composites through coupled in-situ X-ray tomography experiments and Simulations. Sci. Rep. 2020, 10, 3564. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [Google Scholar] [CrossRef]
- Kovachki, N.; Li, Z.; Liu, B.; Azizzadenesheli, K.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Neural operator: Learning maps between function spaces with applications to pdes. J. Mach. Learn. Res. 2023, 24, 1–97. [Google Scholar]
- Croitoru, F.A.; Hondru, V.; Ionescu, R.T.; Shah, M. Diffusion models in vision: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 10850–10869. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Rauf, Z.; Sohail, A.; Khan, A.R.; Asif, H.; Asif, A.; Farooq, U. A survey of the vision transformers and their CNN-transformer based variants. Artif. Intell. Rev. 2023, 56, 2917–2970. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Tiryaki, S.; Aydın, A. An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model. Constr. Build. Mater. 2014, 62, 102–108. [Google Scholar] [CrossRef]
- Khademi, F.; Akbari, M.; Jamal, S.M.; Nikoo, M. Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Front. Struct. Civ. Eng. 2017, 11, 90–99. [Google Scholar] [CrossRef]
- Young, B.A.; Hall, A.; Pilon, L.; Gupta, P.; Sant, G. Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods. Cem. Concr. Res. 2019, 115, 379–388. [Google Scholar] [CrossRef]
- Breuer, K.; Stommel, M. Prediction of short fiber composite properties by an artificial neural network trained on an RVE database. Fibers 2021, 9, 8. [Google Scholar] [CrossRef]
- Gholami, K.; Ege, F.; Barzegar, R. Prediction of composite mechanical properties: Integration of deep neural network methods and finite element analysis. J. Compos. Sci. 2023, 7, 54. [Google Scholar] [CrossRef]
- Stamopoulos, A.; Tserpes, K.; Dentsoras, A. Quality assessment of porous CFRP specimens using X-ray Computed Tomography data and Artificial Neural Networks. Compos. Struct. 2018, 192, 327–335. [Google Scholar] [CrossRef]
- Jia, Y.; Yu, G.; Du, J.; Gao, X.; Song, Y.; Wang, F. Adopting traditional image algorithms and deep learning to build the finite model of a 2.5 D composite based on X-ray computed tomography. Compos. Struct. 2021, 275, 114440. [Google Scholar] [CrossRef]
- Gu, G.X.; Chen, C.T.; Buehler, M.J. De novo composite design based on machine learning algorithm. Extrem. Mech. Lett. 2018, 18, 19–28. [Google Scholar] [CrossRef]
- Yang, Z.; Yabansu, Y.C.; Al-Bahrani, R.; Liao, W.k.; Choudhary, A.N.; Kalidindi, S.R.; Agrawal, A. Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. Comput. Mater. Sci. 2018, 151, 278–287. [Google Scholar] [CrossRef]
- Hanakata, P.Z.; Cubuk, E.D.; Campbell, D.K.; Park, H.S. Accelerated search and design of stretchable graphene kirigami using machine learning. Phys. Rev. Lett. 2018, 121, 255304. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, A.; Gupta, A.; Graham-Brady, L. Stress field prediction in fiber-reinforced composite materials using a deep learning approach. Compos. Part B Eng. 2022, 238, 109879. [Google Scholar] [CrossRef]
- Shokrollahi, Y.; Nikahd, M.M.; Gholami, K.; Azamirad, G. Deep learning techniques for predicting stress fields in composite materials: A superior alternative to finite element analysis. J. Compos. Sci. 2023, 7, 311. [Google Scholar] [CrossRef]
- Khadilkar, A.; Wang, J.; Rai, R. Deep learning–based stress prediction for bottom-up SLA 3D printing process. Int. J. Adv. Manuf. Technol. 2019, 102, 2555–2569. [Google Scholar] [CrossRef]
- Nie, Z.; Jiang, H.; Kara, L.B. Stress Field Prediction in Cantilevered Structures Using Convolutional Neural Networks. J. Comput. Inf. Sci. Eng. 2020, 20, 011002. [Google Scholar] [CrossRef]
- Bailey, R.; Kraft, H. A study of fibre attrition in the processing of long fibre reinforced thermoplastics. Int. Polym. Process. 1987, 2, 94–101. [Google Scholar] [CrossRef]
- Gürsoy, D.; De Carlo, F.; Xiao, X.; Jacobsen, C. TomoPy: A framework for the analysis of synchrotron tomographic data. J. Synchrotron Radiat. 2014, 21, 1188–1193. [Google Scholar] [CrossRef]
- Hanhan, I.; Sangid, M.D. Damage propagation in short fiber thermoplastic composites analyzed through coupled 3D experiments and simulations. Compos. Part B Eng. 2021, 218, 108931. [Google Scholar] [CrossRef]
- Agyei, R.F.; Sangid, M.D. A supervised iterative approach to 3D microstructure reconstruction from acquired tomographic data of heterogeneous fibrous systems. Compos. Struct. 2018, 206, 234–246. [Google Scholar] [CrossRef]
- Hanhan, I.; Agyei, R.; Xiao, X.; Sangid, M.D. Comparing non-destructive 3D X-ray computed tomography with destructive optical microscopy for microstructural characterization of fiber reinforced composites. Compos. Sci. Technol. 2019, 184, 107843. [Google Scholar] [CrossRef]
- Hanhan, I.; Sangid, M.D. ModLayer: A MATLAB GUI Drawing Segmentation Tool for Visualizing and Classifying 3D Data. Integr. Mater. Manuf. Innov. 2019, 8, 468–475. [Google Scholar] [CrossRef]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Seung, H.S. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, B.D.; Broutman, L.J.; Chandrashekhara, K. Analysis and Performance of Fiber Composites; John Wiley & Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
- Bauccio, M. ASM Engineered Materials Reference Book; CRC: Boca Raton, FL, USA, 1994. [Google Scholar]
- Mohammadpour, E.; Awang, M.; Kakooei, S.; Akil, H.M. Modeling the tensile stress-strain response of carbon nanotube/polypropylene nanocomposites using nonlinear representative volume element. Mater. Des. 2014, 58, 36–42. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Bay, R.S.; Tucker, C.L., III. Fiber orientation in simple injection moldings. Part I: Theory and numerical methods. Polym. Compos. 1992, 13, 317–331. [Google Scholar] [CrossRef]
- VerWeyst, B.E.; Tucker, C.L., III; Foss, P.H.; O’Gara, J.F. Fiber orientation in 3-D injection molded features: Prediction and experiment. Int. Polym. Process. 1999, 14, 409–420. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
Operation Layers | Number of Filters | Kernel Size | Stride | Padding | Output Size | |
---|---|---|---|---|---|---|
Input Segmented Microstructure | - | - | - | - | ||
Convolution Layer | ReLU | 32 | SAME | |||
Pooling | Max pooling | - | SAME | |||
Convolution Layer | ReLU | 64 | SAME | |||
Pooling | Max pooling | - | SAME | |||
SE ResNet Layer | ReLU | 64 | SAME | |||
SE ResNet Layer | ReLU | 64 | SAME | |||
SE ResNet Layer | ReLU | 64 | SAME | |||
SE ResNet Layer | ReLU | 64 | SAME | |||
SE ResNet Layer | ReLU | 64 | SAME | |||
Transposed Convolution | ReLU | 64 | SAME | |||
Transposed Convolution | ReLU | 32 | SAME | |||
Convolution Layer | - | 1 | SAME | |||
Output Stress Field | - | - | - | - |
Stages | xy-Plane | xz-Plane | yz-Plane |
---|---|---|---|
Training | 0.88 | 0.82 | 0.80 |
Testing | 0.69 | 0.51 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Hanhan, I.; Sangid, M.D.; Lin, G. Predicting Mechanical Properties from Microstructure Images in Fiber-Reinforced Polymers Using Convolutional Neural Networks. J. Compos. Sci. 2024, 8, 387. https://doi.org/10.3390/jcs8100387
Sun Y, Hanhan I, Sangid MD, Lin G. Predicting Mechanical Properties from Microstructure Images in Fiber-Reinforced Polymers Using Convolutional Neural Networks. Journal of Composites Science. 2024; 8(10):387. https://doi.org/10.3390/jcs8100387
Chicago/Turabian StyleSun, Yixuan, Imad Hanhan, Michael D. Sangid, and Guang Lin. 2024. "Predicting Mechanical Properties from Microstructure Images in Fiber-Reinforced Polymers Using Convolutional Neural Networks" Journal of Composites Science 8, no. 10: 387. https://doi.org/10.3390/jcs8100387
APA StyleSun, Y., Hanhan, I., Sangid, M. D., & Lin, G. (2024). Predicting Mechanical Properties from Microstructure Images in Fiber-Reinforced Polymers Using Convolutional Neural Networks. Journal of Composites Science, 8(10), 387. https://doi.org/10.3390/jcs8100387