Composites in Ballistic Applications Focused on Ballistic Vests—A Review
Abstract
:1. Introduction
2. Natural Fibers in Body Armor
3. Synthetic Fibers in Body Armor
4. Mineral and Carbon-Based Materials
5. Composite Materials in Ballistic Vests
6. Nanomaterials in Ballistic Applications
7. Future Developments
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sockalingam, S.; Chowdhury, S.C.; Gillespie, J.W., Jr.; Keefe, M. Recent Advances in Modeling and Experiments of Kevlar Ballistic Fibrils, Fibers, Yarns and Flexible Woven Textile Fabrics—A Review. Text. Res. J. 2017, 87, 984–1010. [Google Scholar] [CrossRef]
- Min, S.; Chen, X.; Chai, Y.; Lowe, T. Effect of Reinforcement Continuity on the Ballistic Performance of Composites Reinforced with Multiply Plain Weave Fabric. Compos. B Eng. 2016, 90, 30–36. [Google Scholar] [CrossRef]
- Xu, Y.J.; Ma, Y.; Xie, Y.C.; Zhou, Y.; Zhang, H.; Huang, G.Y. Experimental and Numerical Study on the Ballistic Performance of a ZnO-Modified Aramid Fabric. Int. J. Impact Eng. 2023, 175, 104519. [Google Scholar] [CrossRef]
- Xu, F.; Fan, W.; Zhang, Y.; Gao, Y.; Jia, Z.; Qiu, Y.; Hui, D. Modification of Tensile, Wear and Interfacial Properties of Kevlar Fibers under Cryogenic Treatment. Compos. B Eng. 2017, 116, 398–405. [Google Scholar] [CrossRef]
- Feng, X.; Li, S.; Wang, Y.; Wang, Y.; Liu, J. Effects of Different Silica Particles on Quasi-Static Stab Resistant Properties of Fabrics Impregnated with Shear Thickening Fluids. Mater. Des. 2014, 64, 456–461. [Google Scholar] [CrossRef]
- Crouch, I.G. Body Armour—New Materials, New Systems. Def. Technol. 2019, 15, 241–253. [Google Scholar] [CrossRef]
- Mawkhlieng, U.; Majumdar, A.; Laha, A. A Review of Fibrous Materials for Soft Body Armour Applications. RSC Adv. 2020, 10, 1066–1086. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Estaji, S.; Raouf Javidi, M.; Paydayesh, A.; Khonakdar, H.A.; Arjmand, M.; Rostami, E.; Jafari, S.H. Toughening of Epoxy Resin Systems Using Core–Shell Rubber Particles: A Literature Review. J. Mater. Sci. 2021, 56, 18345–18367. [Google Scholar] [CrossRef]
- Estaji, S.; Paydayesh, A.; Mousavi, S.R.; Khonakdar, H.A.; Abiyati, M.M. Polycarbonate/Poly(Methyl Methacrylate)/Silica Aerogel Blend Composites for Advanced Transparent Thermal Insulations: Mechanical, Thermal, and Optical Studies. Polym. Compos. 2021, 42, 5323–5334. [Google Scholar] [CrossRef]
- Paydayesh, A.; Mousavi, S.R.; Estaji, S.; Khonakdar, H.A.; Nozarinya, M.A. Functionalized Graphene Nanoplatelets/Poly (Lactic Acid)/Chitosan Nanocomposites: Mechanical, Biodegradability, and Electrical Conductivity Properties. Polym. Compos. 2022, 43, 411–421. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Faraj Nejad, S.; Jafari, M.; Paydayesh, A. Polypropylene/Ethylene Propylene Diene Monomer/Cellulose Nanocrystal Ternary blend Nanocomposites: Effects of Different Parameters on Mechanical, Rheological, and Thermal Properties. Polym. Compos. 2021, 42, 4187–4198. [Google Scholar] [CrossRef]
- Razavi, M.; Sadeghi, N.; Jafari, S.H.; Khonakdar, H.A.; Wagenknecht, U.; Leuteritz, A. Thermo-Rheological Probe of Microstructural Evolution and Degradation Pathway in the Flame-Retarded PP/EVA/NOR/Clay Nanocomposites. Rheol. Acta 2022, 61, 25–47. [Google Scholar] [CrossRef]
- Khosravi, M.; Seyfi, J.; Saeidi, A.; Khonakdar, H.A. Spin-Coated Polyvinylidene Fluoride/Graphene Nanocomposite Thin Films with Improved β-Phase Content and Electrical Conductivity. J. Mater. Sci. 2020, 55, 6696–6707. [Google Scholar] [CrossRef]
- Arora, S.; Ghosh, A. Evolution of Soft Body Armor. In Advanced Textile Engineering Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 499–552. [Google Scholar]
- Nayak, R.; Crouch, I.; Kanesalingam, S.; Ding, J.; Tan, P.; Lee, B.; Miao, M.; Ganga, D.; Wang, L. Body Armor for Stab and Spike Protection, Part 1: Scientific Literature Review. Text. Res. J. 2018, 88, 812–832. [Google Scholar] [CrossRef]
- Khodadadi, A.; Liaghat, G.; Sabet, A.; Hadavinia, H.; Aboutorabi, A.; Razmkhah, O.; Akbari, M.; Tahmasebi, M. Experimental and Numerical Analysis of Penetration into Kevlar Fabric Impregnated with Shear Thickening Fluid. J. Thermoplast. Compos. Mater. 2018, 31, 392–407. [Google Scholar] [CrossRef]
- Roy, R.; Laha, A.; Awasthi, N.; Majumdar, A.; Butola, B.S. Multi Layered Natural Rubber Coated Woven P -Aramid and UHMWPE Fabric Composites for Soft Body Armor Application. Polym. Compos. 2018, 39, 3636–3644. [Google Scholar] [CrossRef]
- Majumdar, A.; Laha, A. Effects of Fabric Construction and Shear Thickening Fluid on Yarn Pull-out from High-Performance Fabrics. Text. Res. J. 2016, 86, 2056–2066. [Google Scholar] [CrossRef]
- Gürgen, S.; Kuşhan, M.C. The Effect of Silicon Carbide Additives on the Stab Resistance of Shear Thickening Fluid Treated Fabrics. Mech. Adv. Mater. Struct. 2017, 24, 1381–1390. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, G.; Zhou, L.; Li, J.; Shi, X. Dynamic/Quasi-Static Stab-Resistance and Mechanical Properties of Soft Body Armour Composites Constructed from Kevlar Fabrics and Shear Thickening Fluids. RSC Adv. 2017, 7, 39803–39813. [Google Scholar] [CrossRef]
- Bichang’a, D.O.; Alabi, O.O.; Oladele, I.O.; Aramide, F.O.; Adediran, A.A.; Popoola, P.A.I. A Review on the Influence of Natural-Synthetic Fibre Hybrid Reinforced Polymer Composites for Bulletproof and Ballistic Applications. Matériaux Tech. 2022, 110, 503. [Google Scholar] [CrossRef]
- Raja, T.; Palanivel, A.; Karthik, M.; Sundaraj, M. Evaluation of Mechanical Properties of Natural Fibre Reinforced Composites—A Review. Int. J. Mech. Eng. Technol. 2017, 8, 915–924. [Google Scholar]
- George, M.; Mussone, P.G.; Alemaskin, K.; Chae, M.; Wolodko, J.; Bressler, D.C. Enzymatically Treated Natural Fibres as Reinforcing Agents for Biocomposite Material: Mechanical, Thermal, and Moisture Absorption Characterization. J. Mater. Sci. 2016, 51, 2677–2686. [Google Scholar] [CrossRef]
- George, M.; Mussone, P.G.; Bressler, D.C. Surface and Thermal Characterization of Natural Fibres Treated with Enzymes. Ind. Crops Prod. 2014, 53, 365–373. [Google Scholar] [CrossRef]
- Safri, S.N.A.; Sultan, M.T.H.; Jawaid, M.; Jayakrishna, K. Impact Behaviour of Hybrid Composites for Structural Applications: A Review. Compos. B Eng. 2018, 133, 112–121. [Google Scholar] [CrossRef]
- Elseify, L.A.; Midani, M.; El-Badawy, A.; Jawaid, M. Manufacturing Automotive Components from Sustainable Natural Fiber Composites; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-83024-3. [Google Scholar]
- Rohen, L.A.; Margem, F.M.; Monteiro, S.N.; Vieira, C.M.F.; Madeira de Araujo, B.; Lima, E.S. Ballistic Efficiency of an Individual Epoxy Composite Reinforced with Sisal Fibers in Multilayered Armor. Mater. Res. 2015, 18, 55–62. [Google Scholar] [CrossRef]
- Yilmazcoban, I.K.; Doner, S. Ballistic Protection Evaluation of Sequencing the Composite Material Sandwich Panels for the Reliable Combination of Armor Layers. Acta Phys. Pol. A 2016, 130, 342–346. [Google Scholar] [CrossRef]
- Nayak, S.Y.; Sultan, M.T.H.; Shenoy, S.B.; Kini, C.R.; Samant, R.; Shah, A.U.M.; Amuthakkannan, P. Potential of Natural Fibers in Composites for Ballistic Applications—A Review. J. Nat. Fibers 2022, 19, 1648–1658. [Google Scholar] [CrossRef]
- Yang, X.; Wang, K.; Tian, G.; Liu, X.; Yang, S. Evaluation of Chemical Treatments to Tensile Properties of Cellulosic Bamboo Fibers. Eur. J. Wood Wood Prod. 2018, 76, 1303–1310. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Rangappa, S.M.; Siengchin, S.; Parameswaranpillai, J. A Review on the Extraction of Pineapple, Sisal and Abaca Fibers and Their Use as Reinforcement in Polymer Matrix. Express Polym. Lett. 2020, 14, 309–335. [Google Scholar] [CrossRef]
- de Oliveira Braga, F.; Bolzan, L.T.; Lima, É.P., Jr.; Monteiro, S.N. Performance of Natural Curaua Fiber-Reinforced Polyester Composites under 7.62 mm Bullet Impact as a Stand-Alone Ballistic Armor. J. Mater. Res. Technol. 2017, 6, 323–328. [Google Scholar] [CrossRef]
- Naveen, J.; Jawaid, M.; Zainudin, E.S.; Sultan, M.T.H.; Yahaya, R. Evaluation of Ballistic Performance of Hybrid Kevlar ®/Cocos Nucifera Sheath Reinforced Epoxy Composites. J. Text. Inst. 2019, 110, 1179–1189. [Google Scholar] [CrossRef]
- Saleem, A.; Medina, L.; Skrifvars, M.; Berglin, L. Hybrid Polymer Composites of Bio-Based Bast Fibers with Glass, Carbon and Basalt Fibers for Automotive Applications—A Review. Molecules 2020, 25, 4933. [Google Scholar] [CrossRef] [PubMed]
- Zwawi, M. A Review on Natural Fiber Bio-Composites, Surface Modifications and Applications. Molecules 2021, 26, 404. [Google Scholar] [CrossRef] [PubMed]
- Widnyana, A.; Rian, I.; Surata, I.W.; Nindhia, T. Tensile Properties of Coconut Coir Single Fiber with Alkali Treatment and Reinforcement Effect on Unsaturated Polyester Polymer. Mater. Today Proc. 2020, 22, 300–305. [Google Scholar] [CrossRef]
- Alkbir, M.F.M.; Sapuan, S.M.; Nuraini, A.A.; Ishak, M.R. Fibre Properties and Crashworthiness Parameters of Natural Fibre-Reinforced Composite Structure: A Literature Review. Compos. Struct. 2016, 148, 59–73. [Google Scholar] [CrossRef]
- Zakikhani, P.; Zahari, R.; Bin Haji Hameed Sultan, M.T.; Abang Abdul Majid, D.L. Morphological, Mechanical, and Physical Properties of Four Bamboo Species. Bioresources 2017, 12, 2479–2495. [Google Scholar] [CrossRef]
- Raajeshkrishna, C.R.; Chandramohan, P.; Saravanan, D. Effect of Surface Treatment and Stacking Sequence on Mechanical Properties of Basalt/Glass Epoxy Composites. Polym. Polym. Compos. 2019, 27, 201–214. [Google Scholar] [CrossRef]
- Mohammed, L.; Ansari, M.N.M.; Pua, G.; Jawaid, M.; Islam, M.S. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015, 2015, 243947. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A Review of Recent Developments in Natural Fibre Composites and Their Mechanical Performance. Compos. Part. A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- Mahboob, Z.; El Sawi, I.; Zdero, R.; Fawaz, Z.; Bougherara, H. Tensile and Compressive Damaged Response in Flax Fibre Reinforced Epoxy Composites. Compos. Part. A Appl. Sci. Manuf. 2017, 92, 118–133. [Google Scholar] [CrossRef]
- Singh, C.P.; Patel, R.V.; Hasan, M.F.; Yadav, A.; Kumar, V.; Kumar, A. Fabrication and Evaluation of Physical and Mechanical Properties of Jute and Coconut Coir Reinforced Polymer Matrix Composite. Mater. Today Proc. 2021, 38, 2572–2577. [Google Scholar] [CrossRef]
- Nallusamy, S. Analysis of Mechanical Properties on Roselle Fibre with Polymer Matrix Reinforced Composite. Adv. Eng. Forum 2016, 16, 1–6. [Google Scholar] [CrossRef]
- Nadlene, R.; Nadlene, R.; Sapuan, S.M.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Ishak, M.R.; Ishak, M.R.; Yusriah, L. Material Characterization of Roselle Fibre (Hibiscus sabdariffa L.) as Potential Reinforcement Material for Polymer Composites. Fibres Text. East. Eur. 2015, 23, 23–30. [Google Scholar] [CrossRef]
- Bodros, E.; Baley, C. Study of the Tensile Properties of Stinging Nettle Fibres (Urtica dioica). Mater. Lett. 2008, 62, 2143–2145. [Google Scholar] [CrossRef]
- Samanta, K.K. Applications of Nettle Fibre in Textile: A Brief Review. Int. J. Bioresour. Sci. 2021, 8, 39–45. [Google Scholar] [CrossRef]
- da Luz, F.S.; Garcia Filho, F.D.C.; Oliveira, M.S.; Nascimento, L.F.C.; Monteiro, S.N. Composites with Natural Fibers and Conventional Materials Applied in a Hard Armor: A Comparison. Polymers 2020, 12, 1920. [Google Scholar] [CrossRef]
- Purnomo, H.; Widananto, H.; Sulistio, J. The Optimization of Soft Body Armor Materials Made from Carbon-Aramid Fiber Using the Taguchi Method; AIP Publishing: Melville, NY, USA, 2018; p. 020003. [Google Scholar]
- Wang, L.; Kanesalingam, S.; Nayak, R.; Padhye, R. Recent Trends in Ballistic Protection. Text. Light Ind. Sci. Technol. 2014, 3, 37. [Google Scholar] [CrossRef]
- Bouasker, M.; Belayachi, N.; Hoxha, D.; Al-Mukhtar, M. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications. Materials 2014, 7, 3034–3048. [Google Scholar] [CrossRef]
- Andiç-Çakir, Ö.; Sarikanat, M.; Tüfekçi, H.B.; Demirci, C.; Erdoğan, Ü.H. Physical and Mechanical Properties of Randomly Oriented Coir Fiber–Cementitious Composites. Compos. B Eng. 2014, 61, 49–54. [Google Scholar] [CrossRef]
- Ahmad, J.; Zhou, Z. Mechanical Properties of Natural as Well as Synthetic Fiber Reinforced Concrete: A Review. Constr. Build. Mater. 2022, 333, 127353. [Google Scholar] [CrossRef]
- Marques, A.R.; Santiago de Oliveira Patrício, P.; Soares dos Santos, F.; Monteiro, M.L.; de Carvalho Urashima, D.; de Souza Rodrigues, C. Effects of the Climatic Conditions of the Southeastern Brazil on Degradation the Fibers of Coir-Geotextile: Evaluation of Mechanical and Structural Properties. Geotext. Geomembr. 2014, 42, 76–82. [Google Scholar] [CrossRef]
- Natarajan, P.; Thulasingam, C. The Effect of Glass and Polyethylene Fiber Reinforcement on Flexural Strength of Provisional Restorative Resins: An In Vitro Study. J. Indian Prosthodont. Soc. 2013, 13, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Mahat, M.M.; Sabere, A.S.M.; Azizi, J.; Amdan, N.A.N. Potential Applications of Conducting Polymers to Reduce Secondary Bacterial Infections among COVID-19 Patients: A Review. Emergent Mater. 2021, 4, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht-Wiggans, A.; Tsinas, Z.; Krishnamurthy, A.; Forster, A.L. Effect of Aging on Unidirectional Composite Laminate Polyethylene for Body Armor. Polymers 2023, 15, 1347. [Google Scholar] [CrossRef] [PubMed]
- Ali, M. Seismic Performance of Coconut-Fibre-Reinforced-Concrete Columns with Different Reinforcement Configurations of Coconut-Fibre Ropes. Constr. Build. Mater. 2014, 70, 226–230. [Google Scholar] [CrossRef]
- Pujadas, P.; Blanco, A.; Cavalaro, S.; de la Fuente, A.; Aguado, A. Fibre Distribution in Macro-Plastic Fibre Reinforced Concrete Slab-Panels. Constr. Build. Mater. 2014, 64, 496–503. [Google Scholar] [CrossRef]
- Komuraiah, A.; Kumar, N.S.; Prasad, B.D. Chemical Composition of Natural Fibers and Its Influence on Their Mechanical Properties. Mech. Compos. Mater. 2014, 50, 359–376. [Google Scholar] [CrossRef]
- Doddamani, S.; Kulkarni, S.M.; Joladarashi, S.; T S, M.K.; Gurjar, A.K. Analysis of Light Weight Natural Fiber Composites against Ballistic Impact: A Review. Int. J. Lightweight Mater. Manuf. 2023, 6, 450–468. [Google Scholar] [CrossRef]
- Abu Obaid, A.; Yarlagadda, S.; Gillespie, J. Combined Effects of Kink Bands and Hygrothermal Conditioning on Tensile Strength of Polyarylate Liquid Crystal Co-Polymer and Aramid Fibers. J. Compos. Mater. 2016, 50, 339–350. [Google Scholar] [CrossRef]
- Verma, R. Liquid Crystal Polymers: Novel Applications. Polym. Sci. Peer Rev. J. 2021, 1, 1–2. [Google Scholar] [CrossRef]
- Shi, X.; Sun, Y.; Xu, J.; Chen, L.; Zhang, C.; Zhang, G. Effect of Fiber Fraction on Ballistic Impact Behavior of 3D Woven Composites. Polymers 2023, 15, 1170. [Google Scholar] [CrossRef]
- Chu, C.-K.; Chen, Y.-L. Ballistic-Proof Effects of Various Woven Constructions. Fibres Text. East. Eur. 2010, 83, 63–67. [Google Scholar]
- Stopforth, R.; Adali, S. Experimental Study of Bullet-Proofing Capabilities of Kevlar, of Different Weights and Number of Layers, with 9 mm Projectiles. Def. Technol. 2019, 15, 186–192. [Google Scholar] [CrossRef]
- Maithil, P.; Gupta, P.; Chandravanshi, M.L. Study of Mechanical Properties of the Natural-Synthetic Fiber Reinforced Polymer Matrix Composite. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Abtew, M.A.; Boussu, F.; Bruniaux, P.; Loghin, C.; Cristian, I. Ballistic Impact Mechanisms—A Review on Textiles and Fibre-Reinforced Composites Impact Responses. Compos. Struct. 2019, 223, 110966. [Google Scholar] [CrossRef]
- Bilisik, K. Two-Dimensional (2D) Fabrics and Three-Dimensional (3D) Preforms for Ballistic and Stabbing Protection: A Review. Text. Res. J. 2017, 87, 2275–2304. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Aisyah, H.A.; Rafiqah, S.A.; Sabaruddin, F.A.; Kamarudin, S.H.; Norrrahim, M.N.F.; Ilyas, R.A.; et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef]
- Gonzalez, G.M.; Ward, J.; Song, J.; Swana, K.; Fossey, S.A.; Palmer, J.L.; Zhang, F.W.; Lucian, V.M.; Cera, L.; Zimmerman, J.F.; et al. Para-Aramid Fiber Sheets for Simultaneous Mechanical and Thermal Protection in Extreme Environments. Matter 2020, 3, 742–758. [Google Scholar] [CrossRef]
- Kumar, V.V.; Balaganesan, G.; Lee, J.K.Y.; Neisiany, R.E.; Surendran, S.; Ramakrishna, S. A Review of Recent Advances in Nanoengineered Polymer Composites. Polymers 2019, 11, 644. [Google Scholar] [CrossRef]
- Akinwande, D.; Brennan, C.J.; Bunch, J.S.; Egberts, P.; Felts, J.R.; Gao, H.; Huang, R.; Kim, J.-S.; Li, T.; Li, Y.; et al. A Review on Mechanics and Mechanical Properties of 2D Materials—Graphene and Beyond. Extreme Mech. Lett. 2017, 13, 42–77. [Google Scholar] [CrossRef]
- Gallo, L.S.; Villas Boas, M.O.C.; Rodrigues, A.C.M.; Melo, F.C.L.; Zanotto, E.D. Transparent Glass–Ceramics for Ballistic Protection: Materials and Challenges. J. Mater. Res. Technol. 2019, 8, 3357–3372. [Google Scholar] [CrossRef]
- Rathod, S.; Tiwari, G.; Chougale, D. Ballistic Performance of Ceramic–Metal Composite Structures. Mater. Today Proc. 2021, 41, 1125–1129. [Google Scholar] [CrossRef]
- Reddy, T.S.; Reddy, P.R.S.; Madhu, V. Dynamic Behaviour of Carbon/Ultra High Molecular Weight Polyethylene (UHMWPE) Hybrid Composite Laminates Under Ballistic Impact. J. Dyn. Behav. Mater. 2021, 7, 403–413. [Google Scholar] [CrossRef]
- Bao, J.; Wang, Y.; An, R.; Cheng, H.; Wang, F. Investigation of the Mechanical and Ballistic Properties of Hybrid Carbon/Aramid Woven Laminates. Def. Technol. 2022, 18, 1822–1833. [Google Scholar] [CrossRef]
- Zulkifli, F.; Stolk, J.; Heisserer, U.; Yong, A.T.-M.; Li, Z.; Hu, X.M. Strategic Positioning of Carbon Fiber Layers in an UHMwPE Ballistic Hybrid Composite Panel. Int. J. Impact Eng. 2019, 129, 119–127. [Google Scholar] [CrossRef]
- EL-Wazery, M.S.; EL-Elamy, M.I.; Zoalfakar, S.H. Mechanical Properties Of Glass Fiber Reinforced Polyester Composites. Int. J. Appl. Sci. Eng. 2017, 14, 121–131. [Google Scholar] [CrossRef]
- Silva, M.V.; Stainer, D.; Al-Qureshi, H.A.; Montedo, O.R.K.; Hotza, D. Alumina-Based Ceramics for Armor Application: Mechanical Characterization and Ballistic Testing. J. Ceram. 2014, 2014, 618154. [Google Scholar] [CrossRef]
- Erdem, M.; Cinici, H.; Gokmen, U.; Karakoc, H.; Turker, M. Mechanical and Ballistic Properties of Powder Metal 7039 Aluminium Alloy Joined by Friction Stir Welding. Trans. Nonferrous Met. Soc. China 2016, 26, 74–84. [Google Scholar] [CrossRef]
- Fras, T.; Roth, C.C.; Mohr, D. Fracture of High-Strength Armor Steel under Impact Loading. Int. J. Impact Eng. 2018, 111, 147–164. [Google Scholar] [CrossRef]
- Boldin, M.S.; Berendeev, N.N.; Melekhin, N.V.; Popov, A.A.; Nokhrin, A.V.; Chuvildeev, V.N. Review of Ballistic Performance of Alumina: Comparison of Alumina with Silicon Carbide and Boron Carbide. Ceram. Int. 2021, 47, 25201–25213. [Google Scholar] [CrossRef]
- Stupar, S. Ballistic Composites, the Present and the Future. In Smart and Advanced Ceramic Materials and Applications; IntechOpen: London, UK, 2022. [Google Scholar]
- Tepeduzu, B.; Karakuzu, R. Ballistic Performance of Ceramic/Composite Structures. Ceram. Int. 2019, 45, 1651–1660. [Google Scholar] [CrossRef]
- Fejdyś, M.; Kośla, K.; Kucharska-Jastrząbek, A.; Łandwijt, M. Influence of Ceramic Properties on the Ballistic Performance of the Hybrid Ceramic–Multi-Layered UHMWPE Composite Armour. J. Aust. Ceram. Soc. 2021, 57, 149–161. [Google Scholar] [CrossRef]
- Kumar, S.; Akella, K.; Joshi, M.; Tewari, A.; Naik, N.K. Performance of Ceramic-Composite Armors under Ballistic Impact Loading. J. Mater. Eng. Perform. 2020, 29, 5625–5637. [Google Scholar] [CrossRef]
- Yanen, C.; Solmaz, M.Y. Ballistic Tests of Lightweight Hybrid Composites for Body Armor. Mater. Test. 2019, 61, 425–433. [Google Scholar] [CrossRef]
- Fan, T.; Sun, Z.; Zhang, Y.; Li, Y.; Chen, Z.; Huang, P.; Fu, S. Novel Kevlar Fabric Composite for Multifunctional Soft Body Armor. Compos. B Eng. 2022, 242, 110106. [Google Scholar] [CrossRef]
- Mishra, V.D.; Mishra, A.; Singh, A.; Verma, L.; Rajesh, G. Ballistic Impact Performance of UHMWP Fabric Impregnated with Shear Thickening Fluid Nanocomposite. Compos. Struct. 2022, 281, 114991. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Chen, S.; Jin, X.; Fan, X.; Lu, C.; Yang, C. Low-Velocity Impact Behaviors of Glass Fiber-Reinforced Polymer Laminates Embedded with Shape Memory Alloy. Compos. Struct. 2021, 272, 114194. [Google Scholar] [CrossRef]
- Gürgen, S.; Kuşhan, M.C.; Li, W. Shear Thickening Fluids in Protective Applications: A Review. Prog. Polym. Sci. 2017, 75, 48–72. [Google Scholar] [CrossRef]
- Qin, J.; Guo, B.; Zhang, L.; Wang, T.; Zhang, G.; Shi, X. Soft Armor Materials Constructed with Kevlar Fabric and a Novel Shear Thickening Fluid. Compos. B Eng. 2020, 183, 107686. [Google Scholar] [CrossRef]
- Li, W.; Xiong, D.; Zhao, X.; Sun, L.; Liu, J. Dynamic Stab Resistance of Ultra-High Molecular Weight Polyethylene Fabric Impregnated with Shear Thickening Fluid. Mater. Des. 2016, 102, 162–167. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Mottaghitalab, V.; Rezaei, M.; Babaei, H. Numerical and Experimental Investigations into the Response of STF-Treated Fabric Composites Undergoing Ballistic Impact. Thin-Walled Struct. 2017, 119, 700–706. [Google Scholar] [CrossRef]
- Asija, N.; Chouhan, H.; Amare Gebremeskel, S.; Bhatnagar, N. Impact Response of Shear Thickening Fluid (STF) Treated Ultra High Molecular Weight Poly Ethylene Composites—Study of the Effect of STF Treatment Method. Thin-Walled Struct. 2018, 126, 16–25. [Google Scholar] [CrossRef]
- Cheng-Hung, S.; Jhu-Lin, Y.; Yung-Lung, L.; An-Yu, C.; Chang-Pin, C.; Yih-Ming, L.; Ming-Der, G. Design and Ballistic Performance of Hybrid Plates Manufactured from Aramid Composites for Developing Multilayered Armor Systems. Polymers 2022, 14, 5026. [Google Scholar] [CrossRef] [PubMed]
- Rajole, S.; Ravishankar, K.S.; Kulkarni, S.M. Performance Study of Jute-Epoxy Composites/Sandwiches under Normal Ballistic Impact. Def. Technol. 2020, 16, 947–955. [Google Scholar] [CrossRef]
- Xu, J.; Tang, L.; Liu, Y.; Zhou, L.; Chen, J.; Jiang, Z.; Liu, Z.; Yang, B. Hybridization Effects on Ballistic Impact Behavior of Carbon/Aramid Fiber Reinforced Hybrid Composite. Int. J. Impact Eng. 2023, 181, 104750. [Google Scholar] [CrossRef]
- Dewapriya, M.A.N.; Meguid, S.A. Comprehensive Molecular Dynamics Studies of the Ballistic Resistance of Multilayer Graphene-Polymer Composite. Comput. Mater. Sci. 2019, 170, 109171. [Google Scholar] [CrossRef]
- Wu, S.; Sikdar, P.; Bhat, G.S. Recent Progress in Developing Ballistic and Anti-Impact Materials: Nanotechnology and Main Approaches. Def. Technol. 2023, 21, 33–61. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Gao, X.; Zou, T.; Deng, P.; Zhao, J.; Zhang, T.; Chen, Y.; He, L.; Shao, L.; et al. Carbon Nanomaterials-PEDOT: PSS Based Electrochemical Ionic Soft Actuators: Recent Development in Design and Applications. Sens. Actuators A Phys. 2023, 354, 114277. [Google Scholar] [CrossRef]
- Kumar, G.A.; Kumar, M.R.; Babu, A.M.R.; Kumar, R.R.; Kumar, G.S.; Parameswaran, P. Experimental Analysis on Ballistic Performance of Newly Developed Sandwich Hybrid Natural Composites. Mater. Today Proc. 2020, 21, 41–44. [Google Scholar] [CrossRef]
- Ghosh, P.; Ramajeyathilagam, K. Experimental and Numerical Investigations on the Effect of MWCNT-COOH and Al2O3 Hybrid Nanofillers Dispersed CFRP Laminates Subjected to Projectile Impact. Processes 2023, 11, 1435. [Google Scholar] [CrossRef]
- Gautam, R.K.; Verma, A. Electrocatalyst Materials for Oxygen Reduction Reaction in Microbial Fuel Cell. In Microbial Electrochemical Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 451–483. [Google Scholar]
- Vidya; Mandal, L.; Verma, B.; Patel, P.K. Review on Polymer Nanocomposite for Ballistic & Aerospace Applications. Mater. Today Proc. 2020, 26, 3161–3166. [Google Scholar] [CrossRef]
- Vignesh, S.; Surendran, R.; Sekar, T.; Rajeswari, B. Ballistic Impact Analysis of Graphene Nanosheets Reinforced Kevlar-29. Mater. Today Proc. 2021, 45, 788–793. [Google Scholar] [CrossRef]
- Ahmad, I.; Islam, M.; Al Habis, N.; Parvez, S. Hot-Pressed Graphene Nanoplatelets or/and Zirconia Reinforced Hybrid Alumina Nanocomposites with Improved Toughness and Mechanical Characteristics. J. Mater. Sci. Technol. 2020, 40, 135–145. [Google Scholar] [CrossRef]
- Yin, Z.; Yuan, J.; Chen, M.; Si, D.; Xu, C. Mechanical Property and Ballistic Resistance of Graphene Platelets/B4C Ceramic Armor Prepared by Spark Plasma Sintering. Ceram. Int. 2019, 45, 23781–23787. [Google Scholar] [CrossRef]
- Meng, Z.; Han, J.; Qin, X.; Zhang, Y.; Balogun, O.; Keten, S. Spalling-like Failure by Cylindrical Projectiles Deteriorates the Ballistic Performance of Multi-Layer Graphene Plates. Carbon. N. Y. 2018, 126, 611–619. [Google Scholar] [CrossRef]
- Bizao, R.A.; Machado, L.D.; de Sousa, J.M.; Pugno, N.M.; Galvao, D.S. Scale Effects on the Ballistic Penetration of Graphene Sheets. Sci. Rep. 2018, 8, 6750. [Google Scholar] [CrossRef]
- Auton, G.; Kumar, R.K.; Hill, E.; Song, A. Graphene Triangular Ballistic Rectifier: Fabrication and Characterisation. J. Electron. Mater. 2017, 46, 3942–3948. [Google Scholar] [CrossRef]
- Peng, Q.; Peng, S.; Cao, Q. Ultrahigh Ballistic Resistance of Twisted Bilayer Graphene. Crystals 2021, 11, 206. [Google Scholar] [CrossRef]
- Chen, J.; Liu, B. Ballistic Heat Conduction Characteristics of Graphene Nanoribbons. Physica E Low. Dimens. Syst. Nanostruct 2022, 139, 115146. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Dixit, A.R. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 2019, 54, 5992–6026. [Google Scholar] [CrossRef]
- Pol, M.H.; Liaghat, G.; Hajiarazi, F. Effect of Nanoclay on Ballistic Behavior of Woven Fabric Composites: Experimental Investigation. J. Compos. Mater. 2013, 47, 1563–1573. [Google Scholar] [CrossRef]
- Dass, K.; Chauhan, S.R.; Gaur, B. Study on the Effects of Nanoparticulates of SiC, Al2O3, and ZnO on the Mechanical and Tribological Performance of Epoxy-Based Nanocomposites. Part. Sci. Technol. 2017, 35, 589–606. [Google Scholar] [CrossRef]
- Abu-Okail, M.; Alsaleh, N.A.; Farouk, W.M.; Elsheikh, A.; Abu-Oqail, A.; Abdelraouf, Y.A.; Ghafaar, M.A. Effect of Dispersion of Alumina Nanoparticles and Graphene Nanoplatelets on Microstructural and Mechanical Characteristics of Hybrid Carbon/Glass Fibers Reinforced Polymer Composite. J. Mater. Res. Technol. 2021, 14, 2624–2637. [Google Scholar] [CrossRef]
- Kaybal, H.B.; Ulus, H.; Demir, O.; Şahin, Ö.S.; Avcı, A. Effects of Alumina Nanoparticles on Dynamic Impact Responses of Carbon Fiber Reinforced Epoxy Matrix Nanocomposites. Eng. Sci. Technol. Int. J. 2018, 21, 399–407. [Google Scholar] [CrossRef]
- Pol, M.H.; Liaghat, G. Investigation of the High Velocity Impact Behavior of Nanocomposites. Polym. Compos. 2016, 37, 1173–1179. [Google Scholar] [CrossRef]
- Simić, D.M.; Stojanović, D.B.; Dimić, M.; Mišković, K.; Marjanović, M.; Burzić, Z.; Uskoković, P.S.; Zak, A.; Tenne, R. Impact Resistant Hybrid Composites Reinforced with Inorganic Nanoparticles and Nanotubes of WS2. Compos. B Eng. 2019, 176, 107222. [Google Scholar] [CrossRef]
- Mojtabaei, A.; Otadi, M.; Goodarzi, V.; Khonakdar, H.A.; Jafari, S.H.; Reuter, U.; Wagenknecht, U. Influence of Fullerene-like Tungsten Disulfide (IF-WS 2) Nanoparticles on Thermal and Dynamic Mechanical Properties of PP/EVA Blends: Correlation with Microstructure. Compos. B Eng. 2017, 111, 74–82. [Google Scholar] [CrossRef]
- Gonzalez, G.M.; MacQueen, L.A.; Lind, J.U.; Fitzgibbons, S.A.; Chantre, C.O.; Huggler, I.; Golecki, H.M.; Goss, J.A.; Parker, K.K. Production of Synthetic, Para-Aramid and Biopolymer Nanofibers by Immersion Rotary Jet-Spinning. Macromol. Mater. Eng. 2017, 302, 1600365. [Google Scholar] [CrossRef]
Fiber | Elongation at Break (%) | Tensile Strength (MPa) | Tensile Modulus (Gpa) | Density (g/cm3) | Moisture (%) | Diameter (μm) | |
---|---|---|---|---|---|---|---|
Bast | Flax | 1.2–1.6 | 345–1035 | 28–80 | 1.2–1.5 | 8–12 | 12–20 |
Hemp | 1.0–4.0 | 300–700 | 20–70 | 1.3–1.5 | 6.2–12.0 | 25–600 | |
Nettle | 2.3–2.6 | 1594 | 87 | 0.72 | - | 19–47 | |
Jute | 1.3–3.0 | 350–780 | 20–30 | 1.3–1.5 | 12.6–13.7 | 25–250 | |
Kenaf | 2.7–6.9 | 150–250 | 10–20 | 1.1–1.2 | 9.0–12.0 | 30–40 | |
Leaf | Sisal | 2.0–14.0 | 350–840 | 9.0–38 | 0.7–1.5 | 10–22 | 50–200 |
Abaca | 2.0–14.0 | 350–840 | 9.0–38 | 0.7–1.5 | 10–22 | 50–200 | |
Henequen | 3.00–4.7 | 4.30–5.8 | 0.7–2 | 1.1–1.4 | 25 | 25 | |
Palm | 0.8–14.5 | 148.4 | 10.5 | 0.8–1.6 | 14.0 | 50 | |
Banana | 1.0–9.0 | 54–914 | 7.7–32.0 | 0.7–1.4 | 8–10 | 100–250 | |
Ramie | 2.5–3.8 | 400–560 | 1.24–5 | 1.5–1.5 | 12 | 25–30 | |
Date Palm | 3–17 | 300 | 2–12 | 0.6 | 25 | 19–29 | |
Fruit/Seed | Coconut | 15–21 | 140–225 | 3–5 | 1.2 | 15 | 50–300 |
Oil palm | 3.6 | 30 | 1–5.7 | 0.9 | 9.3 | 150–700 | |
Sponge gourd | - | 140 | 28 | 0.71 | 11 | 75–200 | |
Kapok | 1.8–4.2 | 45–64 | 1.7–1.6 | 0.29 | 8.5 | 20 | |
Cotton | 7.9 | 410 | 5–13 | 1.5 | 6.5–8 | 8–20 | |
Grasses | Straw-wheat | 18 | 21–31 | 1.4 | 0.2 | 10 | 5.7 |
Straw-rice | 2.3 | 30 | 2.6 | 0.3–0.4 | 15–18 | 250 | |
Straw-rye | 2.5–5 | 16–33 | 250 | 0.56 | 17–18 | 20–30 | |
Bamboo | 1.3–7.0 | 140–800 | 11–35 | 0.6–1.1 | 11–17 | 88–125 | |
Husk/Hull | Rice husk | 8 | 14–54 | 0.3–2.9 | 0.9–1.5 | 10–15 | 14 |
Sugar | Sugarcane bagasse | 0.9–3.8 | 20–350 | 0.5–27.1 | 0.6–1.3 | 45–55 | 10–25 |
Minerals | Basalt | 3.15 | 2.8–3.1 | 89 | 2.8–3 | 5–15 | 10–20 |
Animal | Spider silk | 30 | 2000 | 30 | 1.3 | - | 3 |
Wool | 35–45 | 1–1.7 | 2.3–3.4 | 1.3 | 16–18 | 10–24 |
Fiber Type | Fiber | Density (g/cm3) | Tensile Strength (GPa) | Tensile Modulus (GPa) | |
---|---|---|---|---|---|
Nylon | Nylon 6 | 1.14 | 0.5 | 3 | 18–26 |
Para-aramid | Technora, Teijin | 1.39 | 3 | 70 | 4.40 |
Twaron, Teijin | 1.45 | 3.10 | 121 | 2 | |
Kevlar 29 | 1.44 | 2.97 | 70 | 4.20 | |
Kevlar 129 | 1.44 | 3.39 | 96 | 3.50 | |
Kevlar 49 | 1.44 | 2.97 | 113 | 2.60 | |
Kevlar KM2 | 1.44 | 3.30 | 70 | 4 | |
UHMWPE | Spectra 900 | 0.97 | 2.40 | 73 | 2.80 |
Spectra 1000 | 0.97 | 2.83 | 103 | 2.80 | |
Spectra 2000 | 0.97 | 3.34 | 124 | 3 | |
Dyneema | 0.97 | 2.60 | 87 | 3.50 | |
Liquid-crystal polymer | Vectran | 1.47 | 3.20 | 91 | 3 |
Fiber Type | Density (g/cm3) | Tensile Strength (GPa) | Tensile Modulus (GPa) | Strain to Failure (%) | |
---|---|---|---|---|---|
Glass | S-Glass | 2.48 | 4.40 | 90 | 5.70 |
E-Glass | 2.63 | 3.50 | 68.50 | 4 | |
Ceramic Fibers | Alumina | 250 | 1.72 | 152 | 2 |
Silicon Carbide | 280 | 4 | 420 | 0.60 | |
Carbon Fiber | Standard | 1.75–2 | 3.65 | 33.50 | 1.50 |
Celion | 1.80 | 4 | 230 | 1.80 | |
Aksaca | 1.78 | 4.20 | 240 | 1.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karhankova, M.; Adamek, M.; Krstulović-Opara, L.; Mach, V.; Bagavac, P.; Stoklasek, P.; Mizera, A. Composites in Ballistic Applications Focused on Ballistic Vests—A Review. J. Compos. Sci. 2024, 8, 415. https://doi.org/10.3390/jcs8100415
Karhankova M, Adamek M, Krstulović-Opara L, Mach V, Bagavac P, Stoklasek P, Mizera A. Composites in Ballistic Applications Focused on Ballistic Vests—A Review. Journal of Composites Science. 2024; 8(10):415. https://doi.org/10.3390/jcs8100415
Chicago/Turabian StyleKarhankova, Michaela, Milan Adamek, Lovre Krstulović-Opara, Vaclav Mach, Petra Bagavac, Pavel Stoklasek, and Ales Mizera. 2024. "Composites in Ballistic Applications Focused on Ballistic Vests—A Review" Journal of Composites Science 8, no. 10: 415. https://doi.org/10.3390/jcs8100415
APA StyleKarhankova, M., Adamek, M., Krstulović-Opara, L., Mach, V., Bagavac, P., Stoklasek, P., & Mizera, A. (2024). Composites in Ballistic Applications Focused on Ballistic Vests—A Review. Journal of Composites Science, 8(10), 415. https://doi.org/10.3390/jcs8100415