Prediction of Mechanical Properties of 3D Printed Particle-Reinforced Resin Composites
Abstract
:1. Introduction
- DLP provides higher mechanical strength and stress resistance compared to SLA [19], which is potentially beneficial for particle-reinforced composites with enhanced durability.
- MSLA balances print speed, accuracy and resolution [25], which could affect overall quality and consistency of particle-reinforced composites.
2. Predictive Methods
2.1. Mori–Tanaka Model
2.2. Eshelby Model
2.3. Halpin–Tsai Model
2.4. Other Models
- Higher viscosity leads to longer stability time, indicating that the resin takes longer time to stabilise, which can slow down 3D printing processes.
- Increasing travelling speed reduces stability time with the potential for faster printing cycles.
- The variations in travelling speed ratio have less impact on stability time than other parameters.
- Thicker layers result in shorter stability time, which could give rise to faster printing, but may compromise fine details and accuracy in 3D printing.
- Larger travel distance increases stability time, which suggests that the resin requires more time to stabilise, potentially slowing down 3D printing processes as well.
- The study provides a significant tool for manufacturers to predict and optimise mechanical properties of SLA parts by adjusting processing parameters effectively.
- By establishing a direct correlation between the degree of cure and key mechanical properties, the research enhances the structural integrity and functional performance of 3D printed parts.
3. Limitations and Gaps
4. Theoretical Integration of AI in Mathematical Models
4.1. AI Enhancements and Limitations
4.2. Improved Data Handling
4.2.1. Data Preprocessing and Cleaning
4.2.2. Data Augmentation
4.3. Enhanced Prediction Accuracy
4.3.1. Advanced Regression Models
4.3.2. Neural Networks and Deep Learning
4.3.3. Transfer Learning
4.4. Real-Time Data Integration and Adaptive Learning
4.4.1. Real-Time Monitoring and Feedback
4.4.2. Adaptive Learning Systems
4.5. Integration with Physical Models
4.5.1. Hybrid Modelling Approaches
4.5.2. Uncertainty Quantification
4.6. Optimisation Techniques
4.6.1. Genetic Algorithms (GAs)
4.6.2. Particle Swarm Optimisation (PSO)
4.7. Data Mining and Pattern Recognition
4.7.1. Clustering Algorithms
4.7.2. Principal Component Analysis (PCA)
4.8. Bayesian Inference and Probabilistic Models
4.8.1. Bayesian Networks
4.8.2. Gaussian Processes
5. Comparative Analysis of Fillers
6. Theoretical Predictions for Practical Applications
7. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lublin, D.; Hao, T.; Malyala, R.; Kisailus, D. Multiscale Mechanical Characterization of Biobased Photopolymers Towards Sustainable Vat Polymerization 3D Printing. RSC Adv. 2024, 14, 10422–10430. [Google Scholar] [CrossRef]
- Leonardi, R. 3D Imaging Advancements and New Technologies in Clinical and Scientific Dental and Orthodontic Fields. J. Clin. Med. 2022, 11, 2200. [Google Scholar] [CrossRef] [PubMed]
- Pagac, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef] [PubMed]
- Perera, S.D.; Durand-Silva, A.; Remy, A.K.; Diwakara, S.D.; Smaldone, R.A. 3D Printing of Aramid Nanofiber Composites by Stereolithography. ACS Appl. Nano Mater. 2021, 5, 13705–13710. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Bayati, A.; Khajepour, M.; Mirasadi, K.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. Poly(ethylene terephthalate) glycol/carbon black composites for 4D printing. Mater. Chem. Phys. 2024, 325, 129737. [Google Scholar] [CrossRef]
- Honda, S. Organocatalytic vat-ring-opening photopolymerization enables 3D printing of fully degradable polymers. Commun. Chem. 2023, 6, 170. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Wu, F.; Kankala, R.K. Vat polymerization-based 3D printing of nanocomposites: A mini review. Front. Mater. 2023, 9, 1118943. [Google Scholar] [CrossRef]
- Sampson, K.L.; Deore, B.; Go, A.; Nayak, M.A.; Orth, A.; Gallerneault, M.; Malenfant, P.R.L.; Paquet, C. Multimaterial Vat Polymerization Additive Manufacturing. ACS Appl. Polym. Mater. 2021, 3, 4304–4324. [Google Scholar] [CrossRef]
- Buchon, L.; Becht, J.M.; Rubatat, L.; Wang, W.; Wei, H.; Xiao, P.; Lalevee, J. Towards Safe Phosphine Oxides Photoinitiators With Good Cytocompatibility for 3D Printing of Thermoplastics. J. Appl. Polym. Sci. 2023, 140, e54694. [Google Scholar] [CrossRef]
- Ellakany, P.; Fouda, S.M.; Mahrous, A.A.; Ghamdi, M.A.A.; Aly, N.M. Influence of CAD/CAM Milling and 3d-Printing Fabrication Methods on the Mechanical Properties of 3-Unit Interim Fixed Dental Prosthesis After Thermo-Mechanical Aging Process. Polymers 2022, 14, 4103. [Google Scholar] [CrossRef]
- Karasan, D.; Legaz, J.; Boitelle, P.; Mojon, P.; Fehmer, V.; Sailer, I. Accuracy of Additively Manufactured and Milled Interim 3-Unit Fixed Dental Prostheses. J. Prosthodont. 2022, 31, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Xenikakis, I.; Tsongas, K.; Tzimtzimis, E.K.; Katsamenis, O.L.; Demiri, E.; Zacharis, C.K.; Georgiou, D.; Kalogianni, E.P.; Tzetzis, D.; Fatouros, D.G. Transdermal Delivery of Insulin Across Human Skin in Vitro With 3D Printed Hollow Microneedles. J. Drug Deliv. Sci. Technol. 2022, 67, 102891. [Google Scholar] [CrossRef]
- Bazyar, M.M.; Tabary, S.A.A.B.; Rahmatabdi, D.; Mohammadi, K.; Hashemi, R. A novel practical method for the production of Functionally Graded Materials by varying exposure time via photo-curing 3D printing. J. Manuf. Process. 2023, 103, 136–143. [Google Scholar] [CrossRef]
- Temizci, T.; Bozoğulları, H.N. Effect of Thermocycling on the Mechanical Properties of Permanent Composite-Based CAD-CAM Restorative Materials Produced by Additive and Subtractive Manufacturing Techniques. BMC Oral Health 2024, 24, 334. [Google Scholar] [CrossRef]
- Lee, H.-E.; Alauddin, M.S.; Ghazali, M.I.M.; Said, Z.; Zol, S.M. Effect of Different Vat Polymerization Techniques on Mechanical and Biological Properties of 3d-Printed Denture Base. Polymers 2023, 15, 1463. [Google Scholar] [CrossRef]
- Štaffová, M.; Ondreáš, F.; Svatík, J.; Zbončák, M.; Jančář, J.; Lepcio, P. 3D printing and post-curing optimization of photopolymerized structures: Basic concepts and effective tools for improved thermomechanical properties. Polym. Test. 2022, 108, 107499. [Google Scholar] [CrossRef]
- Pop, S.; Dudescu, C.; Contac, L.R.; Pop, R. Evaluation of the Tensile Properties of Polished and Unpolished 3D SLA- And DLP-Printed Specimens Used for Surgical Guides Fabrication. Acta Stomatol. Marisiensis J. 2023, 6, 14–21. [Google Scholar] [CrossRef]
- Pop, S.; Dudescu, C.; Mihali, S.G.; Păcurar, M.; Bratu, D.C. Effects of Disinfection and Steam Sterilization on the Mechanical Properties of 3D SLA- And DLP-Printed Surgical Guides for Orthodontic Implant Placement. Polymers 2022, 14, 2107. [Google Scholar] [CrossRef]
- Wada, J.; Wada, K.; Gibreel, M.; Wakabayashi, N.; Iwamoto, T.; Vallittu, P.K.; Lassila, L. Effect of 3D Printer Type and Use of Protection Gas During Post-Curing on Some Physical Properties of Soft Occlusal Splint Material. Polymers 2022, 14, 4618. [Google Scholar] [CrossRef]
- Park, J.H.; Tucker, S.J.; Yoon, J.K.; Kim, Y.; Hollister, S.J. 3D Printing Modality Effect: Distinct Printing Outcomes Dependent on Selective Laser Sintering (SLS) and Melt Extrusion. J. Biomed. Mater. Res. Part A 2024, 112, 1015–1024. [Google Scholar] [CrossRef]
- Lai, Y.C.; Yang, C.C.; Levon, J.A.; Chu, T.M.G.; Morton, D.; Lin, W.S. The Effects of Additive Manufacturing Technologies and Finish Line Designs on the Trueness and Dimensional Stability of 3D-printed Dies. J. Prosthodont. 2022, 32, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Semary, A.; Kamal, M.; Katamish, H.; Morsy, T. Accuracy of Surgical Guides Fabricated Using Two Different 3D Printers for Prosthetically Driven Implant Surgery “An in-Vitro Study”. J. Fundam. Clin. Res. 2023, 3, 112–124. [Google Scholar] [CrossRef]
- Park, S.; Smallwood, A.M.; Ryu, C.Y. Mechanical and Thermal Properties of 3D-Printed Thermosets by Stereolithography. J. Photopolym. Sci. Technol. 2019, 32, 227–232. [Google Scholar] [CrossRef]
- Chaudhary, R.; Fabbri, P.; Leoni, E.; Mazzanti, F.; Akbari, R.; Antonini, C. Additive manufacturing by digital light processing: A review. Prog. Addit. Manuf. 2023, 8, 331–351. [Google Scholar] [CrossRef]
- Junk, S.; Bär, F. Design guidelines for Additive Manufacturing using Masked Stereolithography mSLA. Procedia CIRP 2023, 119, 1122–1127. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, Z.; Zhang, J.; Wang, X.; Xu, Y.; Ding, N.; Peng, Z. Vat Photopolymerization 3D Printing of Advanced Soft Sensors and Actuators: From Architecture to Function. Adv. Mater. Technol. 2021, 6, 2001218. [Google Scholar] [CrossRef]
- Shi, L.; Wang, Y.; Xu, X.; Liu, D.; Ji, Z.; Wang, X. Vat Photopolymerization 3D Printing Hydrogels and Bionic Adhesive Devices: A Minireview. Adv. Mater. Technol. 2024, 9, 2301853. [Google Scholar] [CrossRef]
- Bao, Y.; Paunović, N.; Leroux, J.-C. Challenges and Opportunities in 3D Printing of Biodegradable Medical Devices by Emerging Photopolymerization Techniques. Adv. Funct. Mater. 2022, 32, 2109864. [Google Scholar] [CrossRef]
- Seo, H.; Kim, H.; Choi, H.; Kim, D.G.; Galbadrakh, A.; Jung, Y.G.; Son, J.H.; Yeo, J.g.; Heo, S.Y.; Choe, G.B.; et al. Ceramic Bodies Without Warping Using Epoxide–acrylate Hybrid Ceramic Slurry for Photopolymerization-based 3D Printing. Int. J. Appl. Ceram. Technol. 2023, 21, 76–88. [Google Scholar] [CrossRef]
- Trombetta, R.P.; Inzana, J.A.; Schwarz, E.M.; Kates, S.L.; Awad, H.A. 3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery. Ann. Biomed. Eng. 2016, 45, 23–44. [Google Scholar] [CrossRef]
- Xu, X.; Awad, A.; Martinez, P.R.; Gaisford, S.; Goyanes, Á.; Basit, A.W. Vat Photopolymerization 3D Printing for Advanced Drug Delivery and Medical Device Applications. J. Control. Release 2021, 329, 743–757. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.T.; Tan, C.T.; Liu, L.Y.; Liu, J.; Teng, C.P.; Wang, F. Enhanced Dispersion of Hydroxyapatite Whisker in Orthopedics 3D Printing Resin With Improved Mechanical Performance. J. Appl. Polym. Sci. 2021, 138, 50811. [Google Scholar] [CrossRef]
- Mauriello, J.; Maury, R.; Guillaneuf, Y.; Gigmès, D. 3D/4D Printing of Polyurethanes by Vat Photopolymerization. Adv. Mater. Technol. 2023, 8, 2300366. [Google Scholar] [CrossRef]
- Gulzar, U.; Egorov, V.; Zhang, Y.; O’Dwyer, C. Recyclable 3D-Printed Aqueous Lithium-Ion Battery. Adv. Energy Sustain. Res. 2023, 4, 2300029. [Google Scholar] [CrossRef]
- Shannon, A.; Guttridge, C.; O’Sullivan, A.; O’Sullivan, K.J.; Clifford, S.; Schmalenberger, A.; O’Sullivan, L. Comparing Digital Light Processing and Stereolithography Vat Polymerization Technologies for Antimicrobial 3D Printing Using Silver Oxide as an Antimicrobial Filler. J. Appl. Polym. Sci. 2024, 141, e55122. [Google Scholar] [CrossRef]
- Fu, S.-Y.; Feng, X.-Q.; Lauke, B.; Mai, Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Al Rashid, A.; Ahmed, W.; Khalid, M.Y.; Koç, M. Vat photopolymerization of polymers and polymer composites: Processes and applications. Addit. Manuf. 2021, 47, 102279. [Google Scholar] [CrossRef]
- Schittecatte, L.; Geertsen, V.; Bonamy, D.; Nguyen, T.; Guenoun, P. From resin formulation and process parameters to the final mechanical properties of 3D printed acrylate materials. MRS Commun. 2023, 13, 357–377. [Google Scholar] [CrossRef]
- Kazemi-Khasragh, E.; Fernández Blázquez, J.P.; Garoz Gómez, D.; González, C.; Haranczyk, M. Facilitating polymer property prediction with machine learning and group interaction modelling methods. Int. J. Solids Struct. 2024, 286–287, 112547. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Chen, F.; Abualigah, L. Big Data Analytics Using Artificial Intelligence. Electronics 2023, 12, 957. [Google Scholar] [CrossRef]
- Jacobs, R.; Mayeshiba, T.; Afflerbach, B.; Miles, L.; Williams, M.; Turner, M.; Finkel, R.; Morgan, D. The Materials Simulation Toolkit for Machine learning (MAST-ML): An automated open source toolkit to accelerate data-driven materials research. Comput. Mater. Sci. 2020, 176, 109544. [Google Scholar] [CrossRef]
- Drummond, J.L. Degradation, Fatigue, and Failure of Resin Dental Composite Materials. J. Dent. Res. 2008, 87, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. [Google Scholar] [CrossRef]
- Liu, S.; Huang, X.; Peng, S.; Zheng, Y.; Wu, L.; Weng, Z. Study on the preparation of long-term stability core–shell particles/epoxy acrylate emulsion and toughening improvement for 3D printable UV-curable resin. J. Polym. Res. 2023, 30, 122. [Google Scholar] [CrossRef]
- Yang, Y.; Li, L.; Zhao, J. Mechanical property modeling of photosensitive liquid resin in stereolithography additive manufacturing: Bridging degree of cure with tensile strength and hardness. Mater. Des. 2019, 162, 418–428. [Google Scholar] [CrossRef]
- Sharma, A.; Mukhopadhyay, T.; Rangappa, S.M.; Siengchin, S.; Kushvaha, V. Advances in Computational Intelligence of Polymer Composite Materials: Machine Learning Assisted Modeling, Analysis and Design. Arch. Comput. Methods Eng. 2022, 29, 3341–3385. [Google Scholar] [CrossRef]
- Saroia, J.; Wang, Y.; Wei, Q.; Lei, M.; Li, X.; Guo, Y.; Zhang, K. A review on 3D printed matrix polymer composites: Its potential and future challenges. Int. J. Adv. Manuf. Technol. 2020, 106, 1695–1721. [Google Scholar] [CrossRef]
- Tamur, C.; Li, S.; Zeng, D. Artificial Neural Networks for Predicting Mechanical Properties of Crystalline Polyamide12 via Molecular Dynamics Simulations. Polymers 2023, 15, 4254. [Google Scholar] [CrossRef]
- Goh, G.D.; Sing, S.L.; Yeong, W.Y. A review on machine learning in 3D printing: Applications, potential, and challenges. Artif. Intell. Rev. 2021, 54, 63–94. [Google Scholar] [CrossRef]
- Kibrete, F.; Trzepieciński, T.; Gebremedhen, H.S.; Woldemichael, D.E. Artificial Intelligence in Predicting Mechanical Properties of Composite Materials. J. Compos. Sci. 2023, 7, 364. [Google Scholar] [CrossRef]
- Abd-Elaziem, W.; Khedr, M.; Abd-Elaziem, A.-E.; Allah, M.M.A.; Mousa, A.A.; Yehia, H.M.; Daoush, W.M.; El-Baky, M.A.A. Particle-Reinforced Polymer Matrix Composites (PMC) Fabricated by 3D Printing. J. Inorg. Organomet. Polym. Mater. 2023, 33, 3732–3749. [Google Scholar] [CrossRef]
- Kang, J.; Zheng, J.; Hui, Y.; Li, D. Mechanical Properties of 3D-Printed PEEK/HA Composite Filaments. Polymers 2022, 14, 4293. [Google Scholar] [CrossRef] [PubMed]
- Hetrick, D.R.; Sanei, S.H.R.; Bakis, C.E.; Ashour, O. Evaluating the effect of variable fiber content on mechanical properties of additively manufactured continuous carbon fiber composites. J. Reinf. Plast. Compos. 2021, 40, 365–377. [Google Scholar] [CrossRef]
- Luo, Y. Isotropized Voigt-Reuss model for prediction of elastic properties of particulate composites. Mech. Adv. Mater. Struct. 2022, 29, 3934–3941. [Google Scholar] [CrossRef]
- Antonucci, J.; Dickens, S.H.; Fowler, B.O.; Xu, H.; McDonough, W. Chemistry of Silanes: Interfaces in Dental Polymers and Composites. J. Res. Natl. Inst. Stand. Technol. 2005, 110, 541. [Google Scholar] [CrossRef]
- Fowkes, F. Role of acid-base interfacial bonding in adhesion. J. Adhes. Sci. Technol. 1987, 1, 7–27. [Google Scholar] [CrossRef]
- Fowkes, F. Acid-Base Contributions to Polymer-Filler Interactions. Rubber Chem. Technol. 1984, 57, 328–343. [Google Scholar] [CrossRef]
- Dwight, D.W.; Fowkes, F.; Cole, D.; Kulp, M.; Philippe, J.S.; Salvati, L.; Huang, T.C. Acid-base interfaces in fiber-reinforced polymer composites. J. Adhes. Sci. Technol. 1990, 4, 619–632. [Google Scholar] [CrossRef]
- Todd, M.; Shi, F. Characterizing the interphase dielectric constant of polymer composite materials: Effect of chemical coupling agents. J. Appl. Phys. 2003, 94, 4551–4557. [Google Scholar] [CrossRef]
- Morra, M. Acid-base properties of adhesive dental polymers. Dent. Mater. 1993, 9, 375–378. [Google Scholar] [CrossRef]
- Gupta, A.; Hasanov, S.; Fidan, I.; Zhang, Z. Homogenized modeling approach for effective property prediction of 3D-printed short fibers reinforced polymer matrix composite material. Int. J. Adv. Manuf. Technol. 2022, 118, 4161–4178. [Google Scholar] [CrossRef]
- Wong, J.; Altassan, A.; Rosen, D.W. Additive manufacturing of fiber-reinforced polymer composites: A technical review and status of design methodologies. Composites. Part B Eng. 2023, 255, 110603. [Google Scholar] [CrossRef]
- Benveniste, Y. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 1987, 6, 147–157. [Google Scholar] [CrossRef]
- Abdul, H.K.A.; James, E.K.; Mohd, S.M.A.A.; Fazlina, O.A.; Firdaus, O.M.; Sunar, N.M. Micromechanical Modeling of Polyamide 11 Nanocomposites Properties using Composite Theories. Arch. Metall. Mater. 2023, 68, 1349–1355. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Z. A Note on mori-tanaka’s method. Acta Mech. Solida Sin. 2014, 27, 234–244. [Google Scholar] [CrossRef]
- Martinez-Garcia, J.C.; Serraïma-Ferrer, A.; Lopeandía-Fernández, A.; Lattuada, M.; Sapkota, J.; Rodríguez-Viejo, J. A Generalized Approach for Evaluating the Mechanical Properties of Polymer Nanocomposites Reinforced with Spherical Fillers. Nanomaterials 2021, 11, 830. [Google Scholar] [CrossRef]
- Yanase, K. A Derivation of Eshelby’s Tensor for a Spherical Inclusion; 2019. Available online: https://www.researchgate.net/publication/330401928_A_Derivation_of_Eshelby's_Tensor_for_a_Spherical_Inclusion (accessed on 4 October 2024).
- Luo, Z.; Li, X.; Shang, J.; Zhu, H.; Fang, D. Modified rule of mixtures and Halpin–Tsai model for prediction of tensile strength of micron-sized reinforced composites and Young’s modulus of multiscale reinforced composites for direct extrusion fabrication. Adv. Mech. Eng. 2018, 10, 1687814018785286. [Google Scholar] [CrossRef]
- Schilling, T.; Miller, M.A.; van der Schoot, P. Percolation in suspensions of hard nanoparticles: From spheres to needles. Europhys. Lett. 2015, 111, 56004. [Google Scholar] [CrossRef]
- Fuchs, C.; Bhattacharyya, D.; Friedrich, K.; Fakirov, S. Application of Halpin-Tsai equation to microfibril reinforced polypropylene/poly(ethylene terephthalate) composites. Compos. Interfaces 2006, 13, 331–344. [Google Scholar] [CrossRef]
- Ji, X.L.; Jing, J.K.; Jiang, W.; Jiang, B.Z. Tensile modulus of polymer nanocomposites. Polym. Eng. Sci. 2002, 42, 983–993. [Google Scholar] [CrossRef]
- Winter, R.; Houston, J. Interphase Mechanical Properties in Epoxy-Glass Fiber Composites as Measured by Interfacial Force Microscopy; Sandia National Lab.(SNL-NM): Albuquerque, NM, USA, 1998. [Google Scholar]
- Ishida, H.; Koenig, J. The reinforcement mechanism of fiber-glass reinforced plastics under wet conditions: A review. Polym. Eng. Sci. 1978, 18, 128–145. [Google Scholar] [CrossRef]
- Anbupalani, M.S.; Venkatachalam, C.D.; Rathanasamy, R. Influence of coupling agent on altering the reinforcing efficiency of natural fibre-incorporated polymers—A review. J. Reinf. Plast. Compos. 2020, 39, 520–544. [Google Scholar] [CrossRef]
- Choudhury, T.; Jones, F. The interaction of Resole and Novolak phenolic resins with γ-aminopropyltriethoxysilane treated E-glass surface: A high resolution XPS and micromechanical study. In Silanes and Other Coupling Agents, Volume 2; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Ishida, H. A review of recent progress in the studies of molecular and microstruc ture of coupling agents and their functions in composites, coatings an d adhesive joints. Polym. Compos. 1984, 5, 101–123. [Google Scholar] [CrossRef]
- Wan, C.; Biqiong, C. Reinforcement and interphase of polymer/graphene oxide nanocomposites. J. Mater. Chem. 2012, 22, 3637–3646. [Google Scholar] [CrossRef]
- Dannenberg, E. The Effects of Surface Chemical Interactions on the Properties of Filler-Reinforced Rubbers. Rubber Chem. Technol. 1975, 48, 410–444. [Google Scholar] [CrossRef]
- Vf, V. Modified Rule of Mixtures for Prediction of Tensile Strength of Unidirectional Fiber-reinforced Composites. J. Mater. Sci. Lett. 1998, 17, 1601–1603. [Google Scholar] [CrossRef]
- Paspali, A.; Bao, Y.; Gawne, D.T.; Piestert, F.; Reinelt, S. The influence of nanostructure on the mechanical properties of 3D printed polylactide/nanoclay composites. Compos. Part B Eng. 2018, 152, 160–168. [Google Scholar] [CrossRef]
- Hassanzadeh-Aghdam, M.K.; Jamali, J. A new form of a Halpin–Tsai micromechanical model for characterizing the mechanical properties of carbon nanotube-reinforced polymer nanocomposites. Bull. Mater. Sci. 2019, 42, 117. [Google Scholar] [CrossRef]
- Moghadasi, H.; Mollah, M.T.; Marla, D.; Saffari, H.; Spangenberg, J. Computational Fluid Dynamics Modeling of Top-Down Digital Light Processing Additive Manufacturing. Polymers 2023, 15, 2459. [Google Scholar] [CrossRef]
- Setter, R.; Schmölzer, S.; Rudolph, N.; Moukhina, E.; Wudy, K. Modeling of the curing kinetics of acrylate photopolymers for additive manufacturing. Polym. Eng. Sci. 2023, 63, 2149–2168. [Google Scholar] [CrossRef]
- Kuppusamy, R.R.P.; Zade, A.; Kumar, K. Time-temperature-cure process window of epoxy-vinyl ester resin for applications in liquid composite moulding processes. Mater. Today Proc. 2020, 39, 1407–1411. [Google Scholar] [CrossRef]
- Redmann, A.; Osswald, T.A. A model for modulus development of dual-cure resin systems. Polym. Eng. Sci. 2021, 61, 830–835. [Google Scholar] [CrossRef]
- Li, F.; Thickett, S.C.; Maya, F.; Doeven, E.H.; Guijt, R.M.; Breadmore, M.C. Rapid Additive Manufacturing of 3D Geometric Structures via Dual-Wavelength Polymerization. ACS Macro Lett. 2020, 9, 1409–1414. [Google Scholar] [CrossRef] [PubMed]
- Tomás, M.; Jalali, S.; Tabatha, K. A deep neural network for electrical resistance calibration of self-sensing carbon fiber polymer composites compatible with edge computing structural monitoring hardware electronics. Struct. Health Monit. 2024, 23, 750–775. [Google Scholar] [CrossRef]
- Salehi, H.; Burgueño, R. Emerging artificial intelligence methods in structural engineering. Eng. Struct. 2018, 171, 170–189. [Google Scholar] [CrossRef]
- Folorunso, O.; Onibonoje, M.O.; Hamam, Y.; Sadiku, R.; Ray, S.S. Fabrication and Model Characterization of the Electrical Conductivity of PVA/PPy/rGO Nanocomposite. Molecules 2022, 27, 3696. [Google Scholar] [CrossRef]
- Malley, S.; Reina, C.; Nacy, S.; Gilles, J.; Koohbor, B.; Youssef, G. Predictability of mechanical behavior of additively manufactured parti culate composites using machine learning and data-driven approaches. Comput. Ind. 2022, 142, 103739. [Google Scholar] [CrossRef]
- Verma, D.; Yu, D.; Mohit, K.S.; Chaudhary, A. Advanced processing of 3D printed biocomposite materials using artific ial intelligence. Mater. Manuf. Process. 2021, 37, 518–538. [Google Scholar] [CrossRef]
- Jayasudha, M.; Elangovan, M.; Mahdal, M.; Priyadarshini, J. Accurate Estimation of Tensile Strength of 3D Printed Parts Using Machine Learning Algorithms. Processes 2022, 10, 1158. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Zhang, Y.; Kitipornchai, S.; Yang, J. Machine learning assisted prediction of mechanical properties of graphene/aluminium nanocomposite based on molecular dynamics simulation. Mater. Des. 2022, 213, 110334. [Google Scholar] [CrossRef]
- Gu, G.X.; Chen, C.-T.; Richmond, D.J.; Buehler, M.J. Bioinspired hierarchical composite design using machine learning: Simulation, additive manufacturing, and experiment. Mater. Horiz. 2018, 5, 939–945. [Google Scholar] [CrossRef]
- Qi, Q.; Pagani, L.; Scott, P.J.; Jiang, X. A categorical framework for formalising knowledge in additive manufacturing. Procedia CIRP 2018, 75, 87–91. [Google Scholar] [CrossRef]
- Chakraborty, T.; KS, U.R.; Naik, S.M.; Panja, M.; Manvitha, B. Ten years of generative adversarial nets (GANs): A survey of the state-of-the-art. Mach. Learn. Sci. Technol. 2024, 5, 11001. [Google Scholar] [CrossRef]
- Babichev, S.; Liakh, I.; Kalinina, I. Applying a Recurrent Neural Network-Based Deep Learning Model for Gene Expression Data Classification. Appl. Sci. 2023, 13, 11823. [Google Scholar] [CrossRef]
- Vakalopoulou, M.; Christodoulidis, S.; Burgos, N.; Colliot, O.; Lepetit, V. Deep Learning: Basics and Convolutional Neural Networks (CNNs). In Machine Learning for Brain Disorders; Colliot, O., Ed.; Springer: New York, NY, USA, 2023; pp. 77–115. [Google Scholar] [CrossRef]
- Ezzaim, A.; Dahbi, A.; Assad, N.; Haidine, A. AI-Based Adaptive Learning—State of the Art. In Proceedings of the International Conference on Advanced Intelligent Systems for Sustainable Development, Rabat, Morocco, 22–27 May 2022; Springer: Cham, Switzerland, 2023; pp. 155–167. [Google Scholar]
- Webber, D.; Zhang, Y.; Picard, M.; Boisvert, J.; Paquet, C.; Orth, A. Versatile volumetric additive manufacturing with 3D ray tracing. Opt. Express 2023, 31, 5531–5546. [Google Scholar] [CrossRef] [PubMed]
- Jain, L.C.; Sato-Ilic, M.; Virvou, M.; Tsihrintzis, G.A.; Balas, V.E.; Abeynayake, C. Computational Intelligence Paradigms Innovative Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Ali, S.; Hussain, A.; Bhattacharjee, S.; Athar, A.; Abdullah; Kim, H.-C. Detection of COVID-19 in X-ray Images Using Densely Connected Squeeze Convolutional Neural Network (DCSCNN): Focusing on Interpretability and Explainability of the Black Box Model. Sensors 2022, 22, 9983. [Google Scholar] [CrossRef]
- Bianchi, F.M.; Maiorino, E.; Kampffmeyer, M.C.; Rizzi, A.; Jenssen, R. Recurrent Neural Networks for Short-Term Load Forecasting an Overview and Comparative Analysis, 1st ed.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Nayak, S.R. Smart Sensor Networks Using AI for Industry 4.0: Applications and New Opportunities; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Goyle, K.; Xie, Q.; Goyle, V. DataAssist: A Machine Learning Approach to Data Cleaning and Preparation. arXiv 2023, arXiv:2307.07119. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Azhir, E.; Ahmed, O.H.; Ghafour, M.Y.; Ahmed, S.H.; Rahmani, A.M.; Vo, B. Data cleansing mechanisms and approaches for big data analytics: A systematic study. J. Ambient Intell. Humaniz. Comput. 2023, 14, 99–111. [Google Scholar] [CrossRef]
- Ramzan, F.; Sartori, C.; Consoli, S.; Reforgiato Recupero, D. Generative Adversarial Networks for Synthetic Data Generation in Finance: Evaluating Statistical Similarities and Quality Assessment. AI 2024, 5, 667–685. [Google Scholar] [CrossRef]
- Biswas, A.; Md Abdullah Al, N.; Imran, A.; Sejuty, A.T.; Fairooz, F.; Puppala, S.; Talukder, S. Generative Adversarial Networks for Data Augmentation. In Data Driven Approaches on Medical Imaging; Zheng, B., Andrei, S., Sarker, M.K., Gupta, K.D., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 159–177. [Google Scholar] [CrossRef]
- Gupta, P.; Pratap Singh, A.; Kumar, V. A Review of Ensemble Methods Used in AI Applications. In Proceedings of the Cybersecurity and Evolutionary Data Engineering, Greater Noida, India, 9–11 December 2022; Springer: Singapore, 2023; pp. 145–157. [Google Scholar]
- Ardabili, S.; Mosavi, A.; Várkonyi-Kóczy, A.R. Advances in Machine Learning Modeling Reviewing Hybrid and Ensemble Methods. In Proceedings of the Engineering for Sustainable Future, Balatonfüred, Hungary, 4–7 September 2019; Springer: Cham, Switzerland, 2020; pp. 215–227. [Google Scholar]
- López, O.A.M.; López, A.M.; Crossa, J. Convolutional Neural Networks. In Multivariate Statistical Machine Learning Methods for Genomic Prediction; Montesinos López, O.A., Montesinos López, A., Crossa, J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 533–577. [Google Scholar] [CrossRef]
- Hosna, A.; Merry, E.; Gyalmo, J.; Alom, Z.; Aung, Z.; Azim, M.A. Transfer learning: A friendly introduction. J. Big Data 2022, 9, 102. [Google Scholar] [CrossRef]
- Rafiq, R.B.; Albert, M.V. Transfer Learning: Leveraging Trained Models on Novel Tasks. In Bridging Human Intelligence and Artificial Intelligence; Albert, M.V., Lin, L., Spector, M.J., Dunn, L.S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 65–74. [Google Scholar] [CrossRef]
- Keleko, A.T.; Kamsu-Foguem, B.; Ngouna, R.H.; Tongne, A. Artificial intelligence and real-time predictive maintenance in industry 4.0: A bibliometric analysis. AI Ethics 2022, 2, 553–577. [Google Scholar] [CrossRef]
- Xu, J.; Kovatsch, M.; Mattern, D.; Mazza, F.; Harasic, M.; Paschke, A.; Lucia, S. A Review on AI for Smart Manufacturing: Deep Learning Challenges and Solutions. Appl. Sci. 2022, 12, 8239. [Google Scholar] [CrossRef]
- Cakir, A.; Akın, Ö.; Deniz, H.F.; Yılmaz, A. Enabling real time big data solutions for manufacturing at scale. J. Big Data 2022, 9, 118. [Google Scholar] [CrossRef]
- Jing, Y.; Zhao, L.; Zhu, K.; Wang, H.; Wang, C.; Xia, Q. Research Landscape of Adaptive Learning in Education: A Bibliometric Study on Research Publications from 2000 to 2022. Sustainability 2023, 15, 3115. [Google Scholar] [CrossRef]
- Alfonso, I.; Figueroa, I.A.; Rodriguez-Iglesias, V.; Patiño-Carachure, C.; Medina-Flores, A.; Bejar, L.; Pérez, L. Estimation of elastic moduli of particulate-reinforced composites using finite element and modified Halpin–Tsai models. J. Braz. Soc. Mech. Sci. Eng. 2016, 38, 1317–1324. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, S.; Fu, Y.; Guo, S. Prediction of particle-reinforced composite material properties based on an improved Halpin–Tsai model. AIP Adv. 2024, 14, 045339. [Google Scholar] [CrossRef]
- Mosser, L.; Naeini, E.Z. Calibration and Uncertainty Quantification of Bayesian Convolutional Neural Networks for Geophysical Applications. arXiv 2021, arXiv:2105.12115. [Google Scholar] [CrossRef]
- Du, K.-L.; Swamy, M.N.S. Probabilistic and Bayesian Networks. In Neural Networks and Statistical Learning; Du, K.-L., Swamy, M.N.S., Eds.; Springer London: London, UK, 2014; pp. 563–619. [Google Scholar] [CrossRef]
- Tosun, A.; Bener, A.B.; Akbarinasaji, S. A systematic literature review on the applications of Bayesian networks to predict software quality. Softw. Qual. J. 2017, 25, 273–305. [Google Scholar] [CrossRef]
- Alkafaween, E.a.; Hassanat, A.; Essa, E.; Elmougy, S. An Efficiency Boost for Genetic Algorithms: Initializing the GA with the Iterative Approximate Method for Optimizing the Traveling Salesman Problem—Experimental Insights. Appl. Sci. 2024, 14, 3151. [Google Scholar] [CrossRef]
- Ali, M.; Hussein, M. Characterization and optimization of mechanical properties in design materials using convolutional neural networks and particle swarm optimization. Asian J. Civ. Eng. 2024, 25, 2443–2457. [Google Scholar] [CrossRef]
- Kumpati, R.; Skarka, W.; Skarka, M.; Brojan, M. Enhanced Optimization of Composite Laminates: Multi-Objective Genetic Algorithms with Improved Ply-Stacking Sequences. Materials 2024, 17, 887. [Google Scholar] [CrossRef] [PubMed]
- Seyedzavvar, M. A hybrid ANN/PSO optimization of material composition and process parameters for enhancement of mechanical characteristics of 3D-printed sample. Rapid Prototyp. J. 2023, 29, 1270–1288. [Google Scholar] [CrossRef]
- Chaudhry, M.; Shafi, I.; Mahnoor, M.; Vargas, D.L.R.; Thompson, E.B.; Ashraf, I. A Systematic Literature Review on Identifying Patterns Using Unsupervised Clustering Algorithms: A Data Mining Perspective. Symmetry 2023, 15, 1679. [Google Scholar] [CrossRef]
- Rodriguez, M.Z.; Comin, C.H.; Casanova, D.; Bruno, O.M.; Amancio, D.R.; Costa, L.d.F.; Rodrigues, F.A. Clustering algorithms: A comparative approach. PLoS ONE 2019, 14, e0210236. [Google Scholar] [CrossRef] [PubMed]
- Migenda, N.; Möller, R.; Schenck, W. Adaptive dimensionality reduction for neural network-based online principal component analysis. PLoS ONE 2021, 16, e0248896. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, Z.; Liu, W. A co-training style semi-supervised artificial neural network modeling and its application in thermal conductivity prediction of polymeric composites filled with BN sheets. Energy AI 2021, 4, 100052. [Google Scholar] [CrossRef]
- Gao, T.; Li, A.; Zhang, X.; Harris, G.; Liu, J. A data-driven process-quality-property analytical framework for conductive composites in additive manufacturing. Manuf. Lett. 2023, 35, 626–635. [Google Scholar] [CrossRef]
- Ye, A. Pretraining Strategies and Transfer Learning. In Modern Deep Learning Design and Application Development: Versatile Tools to Solve Deep Learning Problems; Ye, A., Ed.; Apress: Berkeley, CA, USA, 2022; pp. 49–114. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y. Pre-Training and Fine-Tuning. In Introduction to Transfer Learning: Algorithms and Practice; Wang, J., Chen, Y., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 125–140. [Google Scholar] [CrossRef]
- Bommegowda, K.B.; Renukappa, N.M.; Rajan, J.S. Role of Fillers in Controlling the Properties of Polymer Composites: A Review. In Proceedings of the Techno-Societal, Maharashtra, India, 14–15 December 2020; Springer: Cham, Switzerland, 2021; pp. 637–648. [Google Scholar]
- Zhang, X.; Zhang, Q.; Meng, X.; Ye, Y.; Feng, D.; Xue, J.; Wang, H.; Huang, H.; Wang, M.; Wang, J. Rheological and Mechanical Properties of Resin-Based Materials Applied in Dental Restorations. Polymers 2021, 13, 2975. [Google Scholar] [CrossRef]
- Muelas, S.; Peña, J.M.; Robles, V.; Muzhetskaya, K.; Latorre, A. Optimizing the Design of Composite Panels using an Improved Genetic Algorithm. In Proceedings of the International Conference on Engineering Optimization (EngOpt’08), Rio de Janeiro, Brazil, 1–5 June 2008. [Google Scholar]
- Eberhart, R.C.; Shi, Y. Comparison between genetic algorithms and particle swarm optimization. In Proceedings of the Evolutionary Programming VII, San Diego, CA, USA, 25–27 March 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 611–616. [Google Scholar]
- Shabir, S.; Singla, R. A Comparative Study of Genetic Algorithm and the Particle Swarm Optimization. Int. J. Electr. Eng. 2016, 9, 215–223. [Google Scholar]
- Murat, F.; Kaymaz, İ.; Şensoy, A.T.; Korkmaz, İ.H. Determining the Optimum Process Parameters of Selective Laser Melting via Particle Swarm Optimization Based on the Response Surface Method. Met. Mater. Int. 2023, 29, 59–70. [Google Scholar] [CrossRef]
- Shirmohammadi, M.; Goushchi, S.J.; Keshtiban, P.M. Optimization of 3D printing process parameters to minimize surface roughness with hybrid artificial neural network model and particle swarm algorithm. Prog. Addit. Manuf. 2021, 6, 199–215. [Google Scholar] [CrossRef]
- Soetewey, A. The Complete Guide to Clustering Analysis: K-Means and Hierarchical Clustering by Hand and in R. 2020. Available online: https://statsandr.com/blog/clustering-analysis-k-means-and-hierarchical-clustering-by-hand-and-in-r/ (accessed on 26 June 2024).
- Bisong, E. Principal Component Analysis (PCA). In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners; Bisong, E., Ed.; Apress: Berkeley, CA, USA, 2019; pp. 319–324. [Google Scholar] [CrossRef]
- Su, C.; Andrew, A.; Karagas, M.R.; Borsuk, M.E. Using Bayesian networks to discover relations between genes, environment, and disease. BioData Min. 2013, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Yamawaki, R.; Tei, A.; Ito, K.; Kikuchi, J. Decomposition Factor Analysis Based on Virtual Experiments throughout Bayesian Optimization for Compost-Degradable Polymers. Appl. Sci. 2021, 11, 2820. [Google Scholar] [CrossRef]
- Albuquerque, R.Q.; Rothenhäusler, F.; Ruckdäschel, H. Designing formulations of bio-based, multicomponent epoxy resin systems via machine learning. MRS Bull. 2024, 49, 59–70. [Google Scholar] [CrossRef]
- Kobayashi, K.; Kumar, D.; Bonney, M.; Alam, S. Practical Applications of Gaussian Process with Uncertainty Quantification and Sensitivity Analysis for Digital Twin for Accident-Tolerant Fuel. In Handbook of Smart Energy Systems, Fathi, M., Zio, E., Pardalos, P.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–12. [Google Scholar] [CrossRef]
- Marrivada, G.V.; Chaganti, P.K.; Sujith, R. Experimental investigation and machine learning prediction of mechanical properties of graphene nanoplatelets based triaxial braided composites. Mater. Today Commun. 2023, 34, 105305. [Google Scholar] [CrossRef]
- Park, K.; Kim, Y.; Kim, M.; Song, C.; Park, J.; Ryu, S. Designing staggered platelet composite structure with Gaussian process regression based Bayesian optimization. Compos. Sci. Technol. 2022, 220, 109254. [Google Scholar] [CrossRef]
- Beamler. 3D Printing with Technical Ceramics. 2020. Available online: https://www.beamler.com/3d-printing-with-technical-ceramics/#:~:text=Ceramics%20can%20be%203D%20printed,for%20each%20of%20these%20processes (accessed on 3 June 2024).
- Tan, S.; Wu, Y.; Hou, Y.; Deng, H.; Liu, X.; Wang, S.; Xiang, H.; Rong, M.; Zhang, M. Waste nitrile rubber powders enabling tougher 3D printing photosensitive resin composite. Polymer 2022, 243, 124609. [Google Scholar] [CrossRef]
- Chao, W.-C.; Liao, Y.-C. Cost-effective recycled resin for digital light processing 3D printing. J. Clean. Prod. 2023, 388, 136013. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Emmanouil, V.; Tzounis, L.; Mountakis, N.; John, D.K.; Grammatikos, S. Optimization of the Filler Concentration on Fused Filament Fabrication 3D Printed Polypropylene with Titanium Dioxide Nanocomposites. Materials 2021, 14, 3076. [Google Scholar] [CrossRef]
- Fujita, K.; Ikemi, T.; Nishiyama, N. Effects of particle size of silica filler on polymerization conversion in a light-curing resin composite. Dent. Mater. 2011, 27, 1079–1085. [Google Scholar] [CrossRef]
- Ramezanpour, M.; Pourabbas, B. High-resolution 3D printing resin reinforced by polyurethane filler particles; physical and mechanical properties. Polym. Compos. 2023, 44, 8253–8265. [Google Scholar] [CrossRef]
- Fei, G.; Parra-Cabrera, C.; Kuo, Z.; Tietze, M.; Clays, K.; Ameloot, R. Scattering Model for Composite Stereolithography to Enable Resin–Filler Selection and Cure Depth Control. ACS Appl. Polym. Mater. 2021, 3, 6705–6712. [Google Scholar] [CrossRef]
- Ferrández-Montero, A.; Lieblich, M.; Benavente, R.; González-carrasco, J.L.; Ferrari, B. Study of the matrix-filler interface in PLA/Mg composites manufactured by Material Extrusion using a colloidal feedstock. Addit. Manuf. 2020, 33, 101142. [Google Scholar] [CrossRef]
- Robakowska, M.; Ian, G.; Akkerman, R.; Frederik, R.W.; Gojzewski, H. Towards more homogeneous character in 3D printed photopolymers by the addition of nanofillers. Polym. Test. 2023, 129, 108243. [Google Scholar] [CrossRef]
- Zorzetto, L.; Andena, L.; Briatico-Vangosa, F.; Noni, L.D.; Thomassin, J.; Jérôme, C.; Grossman, Q.; Mertens, A.; Weinkamer, R.; Rink, M.; et al. Properties and role of interfaces in multimaterial 3D printed composites. Sci. Rep. 2020, 10, 22285. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Delarue, A.; Ian, M.M.; Hansen, C.; Robinette, E.J.; Amy, M.P. Digital Light Processing of Highly Filled Polymer Composites with Inte rface-Mediated Mechanical Properties. ACS Appl. Polym. Mater. 2022, 4, 6477–6486. [Google Scholar] [CrossRef]
- Street, D.P.; Mah, A.; William, K.L.; Patterson, S.; Bergman, J.; Lokitz, B.; Deanna, L.P.; Jamie, M.M.; Stein, G.; Kilbey, S. Tailoring Interfacial Interactions via Polymer-Grafted Nanoparticles I mproves Performance of Parts Created by 3D Printing. ACS Appl. Polym. Mater. 2020, 2, 1312–1324. [Google Scholar] [CrossRef]
- Postiglione, G.; Natale, G.; Griffini, G.; Levi, M.; Turri, S. UV-assisted Three-Dimensional Printing of Polymer Nanocomposites Based on Inorganic Fillers. Polym. Compos. 2015, 38, 1662–1670. [Google Scholar] [CrossRef]
- Sevriugina, V.; Pavliňák, D.; Ondreáš, F.; Jašek, O.; Štaffová, M.; Lepcio, P. Matching Low Viscosity with Enhanced Conductivity in Vat Photopolymeri zation 3D Printing: Disparity in the Electric and Rheological Percolat ion Thresholds of Carbon-Based Nanofillers Is Controlled by the Matrix Type and Filler Dispersion. ACS Omega 2023, 8, 45566–45577. [Google Scholar] [CrossRef]
- Jia, J.; Xinying, S.; Xiuyi, L.; Xi, S.; Mai, Y.; Jang-Kyo, K. Exceptional electrical conductivity and fracture resistance of 3D inte rconnected graphene foam/epoxy composites. ACS Nano 2014, 8, 5774–5783. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive pol ymer composites: Design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 2020, 142, 100580. [Google Scholar] [CrossRef]
- Hu, J.; Huang, Y.; Yao, Y.; Pan, G.; Sun, J.; Zeng, X.; Sun, R.; Xu, J.B.; Song, B.; Wong, C.-P. Polymer Composite with Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN. ACS Appl. Mater. Interfaces 2017, 9, 13544–13553. [Google Scholar] [CrossRef] [PubMed]
- Caradonna, A.; Badini, C.; Padovano, E.; Pietroluongo, M. Electrical and Thermal Conductivity of Epoxy-Carbon Filler Composites Processed by Calendaring. Materials 2019, 12, 1522. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Ameli, A.; Alian, A.R.; Mark, L.H.; Yu, K.; Wang, S.; Park, C.B. Percolation mechanism and effective conductivity of mechanically defor med 3-dimensional composite networks: Computational modeling and exper imental verification. Compos. Part B Eng. 2020, 207, 108552. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Moutsopoulou, A.; Mountakis, N.; Grammatikos, S.; Papadakis, V.; Dimitris, T. Cost-effective bi-functional resin reinforced with a nano-inclusion bl end for vat photopolymerization additive manufacturing: The effect of multiple antibacterial nanoparticle agents. Biomed. Eng. Adv. 2023, 5, 100091. [Google Scholar] [CrossRef]
AI Technique | Description | References |
---|---|---|
Improved Data Handling | ||
Data Preprocessing and Cleaning | AI algorithms automate data preprocessing tasks, ensuring high-quality data inputs for predictive models. They correct outliers, fill missing values and standardise data formats. | [89,105,106] |
Data Augmentation | GANs are used to create realistic synthetic data that mimics the distribution of original data, thereby expanding the training set and improving model robustness. | [96,107,108] |
Enhanced Prediction Accuracy | ||
Advanced Regression Models | Advanced regression models like support vector machines (SVM), decision trees and ensemble methods provide accurate predictions by combining multiple algorithms. | [109,110] |
Neural Networks and Deep Learning | Neural networks, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), capture complex nonlinear relationships in data, thus improving prediction accuracy. | [97,98,111] |
Transfer Learning | Transfer learning pre-trains models on large datasets and fine-tunes them on specific smaller datasets, leveraging existing knowledge to improve model performance. | [112,113] |
Real-Time Data Integration and Adaptive Learning | ||
Real-Time Monitoring and Feedback | AI models integrated with real-time monitoring systems continuously update predictions based on live data for the optimisation of 3D printing processes. | [114,115,116] |
Adaptive Learning Systems | AI systems that continuously learn from new printing results and material properties automatically update predictive models to reflect the latest information and trends. | [99,117] |
Integration with Physical Models | ||
Hybrid Modelling Approaches | The combination of AI with conventional physical models creates hybrid models that enhance prediction accuracy and applicability to various materials. | [81,118,119] |
Uncertainty Quantification | Bayesian neural networks (BNNs) can help quantify uncertainties in predictions, providing more robust and reliable estimates of mechanical properties. They facilitate probabilistic predictions with confidence intervals, helping understand the uncertainty and reliability of model outputs. | [120,121,122,123,124] |
Optimisation Techniques | ||
Genetic Algorithms | Techniques like genetic algorithms (GAs) and particle swarm optimisation (PSO) optimise filler configurations and 3D printing parameters to improve mechanical properties. | [123,124,125,126] |
Data Mining and Pattern Recognition | ||
Clustering Algorithms | Clustering algorithms and principal component analysis (PCA) reveal patterns and key variables in data in order to optimise composite formulations and improve model accuracy. | [127,128,129] |
Synergistic Effects | Role | Evidence |
---|---|---|
Complimentary size effects |
| |
Interfacial interactions |
|
|
Interconnected networks |
|
Micromechanical Models | AI Techniques | |
---|---|---|
Accuracy |
|
|
Complexity |
|
|
Advantages |
|
|
Disadvantages |
|
|
Context for end user requirements |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rooney, K.; Dong, Y.; Basak, A.K.; Pramanik, A. Prediction of Mechanical Properties of 3D Printed Particle-Reinforced Resin Composites. J. Compos. Sci. 2024, 8, 416. https://doi.org/10.3390/jcs8100416
Rooney K, Dong Y, Basak AK, Pramanik A. Prediction of Mechanical Properties of 3D Printed Particle-Reinforced Resin Composites. Journal of Composites Science. 2024; 8(10):416. https://doi.org/10.3390/jcs8100416
Chicago/Turabian StyleRooney, K., Y. Dong, A. K. Basak, and A. Pramanik. 2024. "Prediction of Mechanical Properties of 3D Printed Particle-Reinforced Resin Composites" Journal of Composites Science 8, no. 10: 416. https://doi.org/10.3390/jcs8100416
APA StyleRooney, K., Dong, Y., Basak, A. K., & Pramanik, A. (2024). Prediction of Mechanical Properties of 3D Printed Particle-Reinforced Resin Composites. Journal of Composites Science, 8(10), 416. https://doi.org/10.3390/jcs8100416