Synthesis of Conjugates of PEG-RGD Derivatives with Fe3O4 Magnetic Nanoparticles for Cell Labelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of MNPs
2.2.1. Synthesis of Initial Nanoparticles (MNPs 1 and 2)
2.2.2. Application of SiO2 Coating on MNPs (MNPs 3–5) and Their Aminopropylsilane Functionalisation (MNPs 6 and 7)
2.2.3. Synthesis of PEG-RGD Conjugate 6
2.2.4. Conjugation of RGD with MNPs (MNPs-RGD 7–12) General Procedure
2.2.5. Synthesis of MNPs-RGD*TFA 13–18 General Procedure
2.3. Characterisation of Synthesised Materials
2.4. In Vitro Experiments
3. Results and Discussion
3.1. MNP Synthesis and Characterisation
3.2. In Vitro Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, F.; Qin, Y.; Lee, J.; Liao, H.; Wang, N.; Davis, T.P.; Qiao, R.; Ling, D. Stimuli-responsive nano-assemblies for remotely controlled drug delivery. J. Control. Release 2020, 322, 566–592. [Google Scholar] [CrossRef]
- Mohapatra, J.; Nigam, S.; George, J.; Arellano, A.C.; Wang, P.; Liu, J.P. Principles and applications of magnetic nanomaterials in magnetically guided bioimaging. Mater. Today Phys. 2023, 32, 101003. [Google Scholar] [CrossRef]
- Shabatina, T.I.; Vernaya, O.I.; Shimanovskiy, N.L.; Melnikov, M.Y. Metal and metal oxides nanoparticles and nanosystems in anticancer and antiviral theragnostic agents. Pharmaceutics 2023, 15, 1181. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Li, B.; Qiao, Y. Fe3O4 Nanoparticles in targeted drug/gene delivery systems. Materials 2018, 11, 324. [Google Scholar] [CrossRef] [PubMed]
- Kurczewska, J.; Dobosz, B. Recent progress and challenges regarding magnetite-based nanoparticles for targeted drug delivery. Appl. Sci. 2024, 14, 1132. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Shi, J.; Chen, Z.; Wang, Y.; Gu, S.; Fu, Y.; Huang, J.; Ding, J.; Yu, L. An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis. Biomaterials 2023, 298, 122139. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Kaur, T.; Chauhan, A.; Kumar, R.; Kuanr, B.K.; Sharma, D. Tailoring nanoparticles design for enhanced heating efficiency and improved magneto-chemo therapy for glioblastoma. Biomater. Adv. 2022, 139, 213021. [Google Scholar] [CrossRef]
- Demin, A.M.; Vakhrushev, A.V.; Pershina, A.G.; Valova, M.S.; Efimova, L.V.; Syomchina, A.A.; Uimin, M.A.; Minin, A.S.; Levit, G.L.; Krasnov, V.P.; et al. Magnetic-responsive doxorubicin-containing materials based on Fe3O4 nanoparticles with a SiO2/PEG shell and study of their effects on cancer cell lines. Int. J. Mol. Sci. 2022, 23, 9093. [Google Scholar] [CrossRef]
- Shen, B.; Ma, Y.; Yu, S.; Ji, C. Smart multifunctional magnetic nanoparticle-based drug delivery system for cancer thermo-chemotherapy and intracellular imaging. ACS Appl. Mater. Interfaces 2016, 8, 24502–24508. [Google Scholar] [CrossRef]
- Li, Z.; Bai, R.; Yi, J.; Zhou, H.; Xian, J.; Chen, C. Designing smart iron oxide nanoparticles for MR imaging of tumors. Chem. Biomed. Imaging 2023, 1, 315–339. [Google Scholar] [CrossRef]
- Chen, C.; Huang, B.; Zhang, R.; Sun, C.; Chen, L.; Ge, J.; Zhou, D.; Li, Y.; Wu, S.; Qian, Z.; et al. Surface ligand-regulated renal clearance of MRI/SPECT dual-modality nanoprobes for tumor imaging. J. Nanobiotechnol. 2024, 22, 245. [Google Scholar] [CrossRef]
- Demin, A.M.; Pershina, A.G.; Minin, A.S.; Brikunova, O.Y.; Murzakaev, A.M.; Perekucha, N.A.; Romashchenko, A.V.; Shevelev, O.B.; Uimin, M.A.; Byzov, I.V.; et al. Smart design of pH-responsive system based on pHLIP-modified magnetite nanoparticles for tumor MRI. ACS Appl. Mater. Interfaces 2021, 13, 36800. [Google Scholar] [CrossRef] [PubMed]
- Pershina, A.G.; Brikunova, O.Y.; Demin, A.M.; Abakumov, M.A.; Vaneev, A.N.; Naumenko, V.A.; Erofeev, A.S.; Gorelkin, P.V.; Nizamov, T.R.; Muslimov, A.R.; et al. Variation in tumor pH affects pH-triggered delivery of peptide-modified magnetic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2021, 32, 102317–102329. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Banstola, A.; Jeong, J.-H.; Seo, J.H.; Yook, S. Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. J. Control. Release 2022, 348, 518–536. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Hu, K.; Zhang, M.; Sheng, J.; Xu, X.; Tang, S.; Li, Y.; Yang, S.; Si, G.; Mao, Y.; et al. Extracellular magnetic labeling of biomimetic hydrogel-induced human mesenchymal stem cell spheroids with ferumoxytol for MRI tracking. Bioact. Mater. 2023, 19, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Demin, A.M.; Mekhaev, A.V.; Kandarakov, O.F.; Popenko, V.I.; Leonova, O.G.; Murzakaev, A.M.; Kuznetsov, D.K.; Uimin, M.A.; Minin, A.S.; Shur, V.Y.; et al. L-Lysine-modified Fe3O4 nanoparticles for magnetic cell labelling. Colloids Surf. B Biointerfaces 2020, 190, 110879. [Google Scholar] [CrossRef]
- Frenea-Robin, M.; Marchalot, J. Basic principles and recent advances in magnetic cell separation. Magnetochemistry 2022, 8, 11. [Google Scholar] [CrossRef]
- Polyakova, N.; Kandarakov, O.; Belyavsky, A. Selection of cell populations with high or low surface marker expression using magnetic sorting. Cells 2023, 12, 1286. [Google Scholar] [CrossRef] [PubMed]
- Savvateeva, M.V.; Demin, A.M.; Krasnov, V.P.; Belyavsky, A.V. Magnetic stromal layers for enhanced and unbiased recovery of co-cultured hematopoietic cells. Anal. Biochem. 2016, 509, 146–155. [Google Scholar] [CrossRef]
- Duan, X.; Wang, P.; He, L.; He, Z.; Wang, S.; Yang, F.; Gao, C.; Ren, W.; Lin, J.; Chen, T.; et al. Peptide-functionalized inorganic oxide nanomaterials for solid cancer imaging and therapy. Adv. Mater. 2024, 23, 11548. [Google Scholar] [CrossRef]
- David, H.; Oryani, M.A.; Rezagholinejad, N.; Esparham, A.; Tajaldini, M.; Karimi-Shahri, M. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin–RGD interactions. Cancer Med. 2024, 13, e6800. [Google Scholar] [CrossRef]
- Qin, W.; Chandra, J.; Abourehab, M.A.S.; Gupta, N.; Chen, Z.-S.; Kesharwani, P.; Cao, H.-L. New opportunities for RGD-engineered metal nanoparticles in cancer. Mol. Cancer 2023, 22, 87. [Google Scholar] [CrossRef] [PubMed]
- Arriortua, C.O.K.; Insausti, M.; Lezama, L.; de Muro, I.G.; Garaio, E.; de la Fuente, J.M.; Fratila, R.M.; Morales, M.P.; Costa, R.; Eceiza, M.; et al. RGD-Functionalized Fe3O4 nanoparticles for magnetic hyperthermia. Colloids Surf. B 2018, 165, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yang, J.; Yan, Y.; Li, J.; Shen, M.; Zhang, G.; Mignani, S.; Shi, X. RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T1-weighted MR imaging of gliomas. Nanoscale 2015, 7, 14538–14546. [Google Scholar] [CrossRef]
- Zhang, C.; Jugold, M.; Woenne, E.C.; Lammers, T.; Morgenstern, B.; Mueller, M.M.; Zentgraf, H.; Bock, M.; Eisenhut, M.; Semmler, W.; et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res. 2007, 67, 1555–1562. [Google Scholar] [CrossRef]
- Zheng, S.W.; Huang, M.; Hong, R.Y.; Deng, S.M.; Cheng, L.F.; Gao, B.; Badami, D. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia. J. Biomater. Appl. 2014, 28, 1051–1059. [Google Scholar] [CrossRef]
- Fernández-Barahona, I.; Gutiérrez, L.; Veintemillas-Verdaguer, S.; Pellico, J.; Morales, M.P.; Catala, M.; del Pozo, M.A.; Ruiz-Cabello, J.; Herranz, F. Cu-doped extremely small iron oxide nanoparticles with large longitudinal relaxivity: One-pot synthesis and in vivo targeted molecular imaging. ACS Omega 2019, 4, 2719–2727. [Google Scholar] [CrossRef]
- Sani, S.; Messe, M.; Fuchs, Q.; Pierrevelcin, M.; Laquerriere, P.; Entz-Werle, N.; Reita, D.; Etienne-Selloum, N.; Bruban, V.; Choulier, L.; et al. Biological relevance of RGD-integrin subtype-specific ligands in cancer. ChemBioChem 2021, 22, 1151–1160. [Google Scholar] [CrossRef]
- Ludwig, B.S.; Kessler, H.; Kossatz, S.; Reuning, U. RGD-binding integrins revisited: How recently discovered functions and novel synthetic ligands (re-)shape an ever-evolving field. Cancers 2021, 13, 1711. [Google Scholar] [CrossRef]
- Liu, S. Radiolabeled cyclic RGD peptide bioconjugates as radiotracers targeting multiple integrins. Bioconjug. Chem. 2015, 26, 1413. [Google Scholar] [CrossRef]
- Dong, X.; Yu, Y.; Wang, Q.; Xi, Y.; Liu, Y. Interaction mechanism and clustering among RGD peptides and integrins. Mol. Inf. 2017, 36, 1600069. [Google Scholar] [CrossRef] [PubMed]
- Sapsford, K.E.; Algar, W.R.; Berti, L.; Gemmill, K.B.; Casey, B.J.; Oh, E.; Stewart, M.H.; Medintz, I.L. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem. Rev. 2013, 113, 1904–2074. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Hou, Y.; Zeng, J.; Chen, L.; Liu, C.; Yang, W.; Gao, M. Tumor microenvironment-triggered aggregation of anti-phagocytosis 99mTc-labelled Fe3O4 nanoprobes for enhanced tumor imaging in vivo. Adv. Mater. 2017, 29, 1701095. [Google Scholar] [CrossRef] [PubMed]
- Tsiapa, I.; Efthimiadou, E.K.; Fragogeorgi, E.; Loudos, G.; Varvarigou, A.D.; Bouziotis, P.; Kordas, G.C.; Mihailidis, D.; Nikiforidis, G.C.; Xanthopoulos, S.; et al. 99mTc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of αVβ3-mediated tumor expression and feasibility for hyperthermia treatment. J. Colloid Interface Sci. 2014, 433, 163–175. [Google Scholar] [CrossRef]
- Liolios, C.; Koutsikou, T.S.; Salvanou, E.-A.; Kapiris, F.; Machairas, E.; Stampolaki, M.; Kolocouris, A.; Efthimiadou, E.Κ.; Bouziotis, P. Synthesis and in vitro proof-of-concept studies on bispecific iron oxide magnetic nanoparticles targeting PSMA and GRP receptors for PET/MR imaging of prostate cancer. Int. J. Pharm. 2022, 624, 122008. [Google Scholar] [CrossRef]
- Demin, A.M.; Maksimovskikh, A.V.; Mekhaev, A.V.; Kuznetsov, D.K.; Minin, A.S.; Pershina, A.G.; Uimin, M.A.; Shur, V.Y.; Krasnov, V.P. Silica coating of Fe3O4 magnetic nanoparticles with PMIDA assistance to increase the surface area and enhance peptide immobilization efficiency. Ceram. Int. 2021, 47, 23078–23087. [Google Scholar] [CrossRef]
- Pershina, A.G.; Demin, A.M.; Perekucha, N.A.; Brikunova, O.Y.; Efimova, L.V.; Nevskaya, K.V.; Vakhrushev, A.V.; Zgoda, V.G.; Uimin, M.A.; Minin, A.S.; et al. Peptide ligands on the PEGylated nanoparticle surface and human serum composition are key factors for the interaction between immune cells and nanoparticles. Colloids Surf. B 2023, 221, 112981. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Ma, Z.; Wu, B. Effects of pharmaceutical PEGylation on drug metabolism and its clinical concerns. Expert Opin. Drug Metab. Toxicol. 2014, 10, 1691–1702. [Google Scholar] [CrossRef]
- Padín-González, E.; Lancaster, P.; Bottini, M.; Gasco, P.; Tran, L.; Fadeel, B.; Wilkins, T.; Monopoli, M.P. Understanding the role and impact of poly(ethylene glycol) (PEG) on nanoparticle formulation: Implications for COVID-19 vaccines. Front. Bioeng. Biotechnol. 2022, 10, 882363. [Google Scholar] [CrossRef]
- Vigorov, A.Y.; Demin, A.M.; Nizova, I.A.; Krasnov, V.P. Synthesis of derivatives of the RGD peptide with the residues of glutaric and adipic acids. Russ. J. Bioorg. Chem. 2014, 40, 142–150. [Google Scholar] [CrossRef]
- Gruzdev, D.A.; Vakhrushev, A.V.; Demin, A.M.; Baryshnikova, M.A.; Levit, G.L.; Krasnov, V.P.; Charushin, V.N. Synthesis of closo- and nido-carborane derivatives of the KRGD peptide. J. Organomet. Chem. 2024, 1008, 123052. [Google Scholar] [CrossRef]
- Gueddida, S.; Badawi, M.; Lebègue, S. Grafting of iron on amorphous silica surfaces from ab initio calculations. J. Chem. Phys. 2020, 152, 214706. [Google Scholar] [CrossRef] [PubMed]
- Ahangaran, F.; Hassanzadeh, A.; Nouri, S. Surface modification of Fe3O4@SiO2 microsphere by silane coupling agent. Int. Nano Lett. 2013, 3, 23. [Google Scholar] [CrossRef]
- Fang, G.; Chen, H.; Zhang, Y.; Chen, A. Immobilization of pectinase onto Fe3O4@SiO2–NH2 and its activityand stability. Int. J. Biol. Macromol. 2016, 88, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Khummalai, N.; Boonamnuayvitaya, V. Suppression of arsenopyrite surface oxidation by sol-gel coatings. Biosci. Bioeng. 2005, 99, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Luo, T.; Fan, J.; Zhou, C.; Hu, M.; Wang, J.; Wen, L.; Qin, L.; Liu, G. Performance and mechanisms of PropS-SH/HA coatings in the inhibition of pyrite oxidation. ACS Omega 2021, 6, 32011–32021. [Google Scholar] [CrossRef]
- Demin, A.M.; Vigorov, A.Y.; Nizova, I.A.; Uimin, M.A.; Shchegoleva, N.N.; Ermakov, A.E.; Krasnov, V.P.; Charushin, V.N. Functionalization of Fe3O4 magnetic nanoparticles with RGD peptide derivatives. Mendeleev Commun. 2014, 24, 20–22. [Google Scholar] [CrossRef]
- Demin, A.M.; Vakhrushev, A.V.; Mekhaev, A.V.; Uimin, M.A.; Krasnov, V.P. Modification of Fe3O4 magnetic nanoparticles with a GRGD peptide. Russ. Chem. Bull. 2021, 70, 449–456. [Google Scholar] [CrossRef]
- Carpino, L.A.; Shroff, H.; Triolo, S.A.; Mansour, E.-S.M.E.; Wenschuh, H.; Albericio, F. The 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl group (Pbf) as arginine side chain protectant. Tetrahedron Lett. 1993, 34, 7829. [Google Scholar] [CrossRef]
- Varshney, R.; Hazari, P.P.; Uppal, J.K.; Pal, S.; Stromberg, R.; Allard, M.; Mishra, A.K. Solid phase synthesis, radiolabeling and biological evaluation of a 99mTc-labeled αVβ3 tripeptide (RGD) conjugated to DOTA as a tumor imaging agent. Cancer Biol. Ther. 2011, 11, 893–901. [Google Scholar] [CrossRef]
- Wang, Y.X. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Estelrich, J.; Sánchez-Martín, M.J.; Busquets, M.A. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int. J. Nanomed. 2015, 10, 1727–1741. [Google Scholar] [CrossRef]
- Tegafaw, T.; Liu, S.; Ahmad, M.Y.; Saidi, A.K.A.A.; Zhao, D.; Liu, Y.; Nam, S.-W.; Chang, Y.; Lee, G.H. Magnetic nanoparticle-based high-performance positive and negative magnetic resonance imaging contrast agents. Pharmaceutics 2023, 15, 1745. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- ISO-10993-5; Biological Evaluation of Medical Devices Part 5: Test for Cytotoxicity: In Vitro Methods. ANSI/AAMI: Arlington, VA, USA, 1999.
- Dechantsreiter, M.A.; Planker, E.; Mathä, B.; Lohof, E.; Hölzemann, G.; Jonczyk, A.; Goodman, S.L.; Kessler, H. N-Methylated cyclic RGD peptides as highly active and selective αVβ3 integrin antagonists. J. Med. Chem. 1999, 42, 3033–3040. [Google Scholar] [CrossRef]
- Pershina, A.G.; Efimova, L.V.; Brikunova, O.Y.; Nevskaya, K.V.; Sukhinina, E.V.; Hmelevskaya, E.S.; Demin, A.M.; Naumenko, V.A.; Malkeyeva, D.; Kiseleva, E.; et al. Nano-bio interaction of magnetic nanoparticles with cells in a tumor at the single-cell level. Nano Today 2024, 56, 102300. [Google Scholar] [CrossRef]
- Salvati, A.; Pitek, A.S.; Monopoli, M.P.; Prapainop, K.; Bombelli, F.B.; Hristov, D.R.; Kelly, P.M.; Åberg, C.; Mahon, E.; Dawson, K.A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 2013, 8, 137–143. [Google Scholar] [CrossRef]
- Portilla, Y.; Mulens-Arias, V.; Daviu, N.; Paradela, A.; Perez-Yagüe, S.; Barber, D.F. Interaction of iron oxide nanoparticles with macrophages is influenced distinctly by “Self” and “Non-Self” biological identities. ACS Appl. Mater. Interfaces 2023, 15, 35906–35926. [Google Scholar] [CrossRef]
MNP Type | MNP Number | Elemental Content, % | Content of Inorganic Components, % | Content of Organic Components, μmol/g | ||||
---|---|---|---|---|---|---|---|---|
Fe a | Si a | P a | C b | Fe3O4:SiO2 c | CPMIDA c | CPEG-RGD d | ||
MNPs | 2 | 97.96 ± 0.16 | 0 | 2.04 ± 0.02 | 3.08 ± 0.01 | - | 413 ± 4 | 0 |
MNPs-SiO2 | 3 | 77.90 ± 0.46 | 22.10 ± 0.10 | 0 | - | 69:31 | 0 | 0 |
4 | 75.25 ± 0.09 | 24.09 ± 0.01 | 0.66 ± 0.04 | 1.62 ± 0.01 | 67:33 | 128 ± 9 | 0 | |
MNPs-SiO2-APS | 5 | 76.57 ± 0.35 | 23.43 ± 0.10 | 0 | 1.84 ± 0.02 | 68:32 | 0 | 0 |
6 | 74.88 ± 0.02 | 24.48 ± 0.04 | 0.64 ± 0.03 | 2.26 ± 0.04 | 66:34 | 124 ± 5 | 0 | |
MNPs-RGD | 7 | 74.90 ± 0.11 | 25.10 ± 0.41 | 0 | 3.81 ± 0.01 | 66:34 | 0 | 18.9 ± 0.3 |
8 | 74.89 ± 0.11 | 25.11 ± 0.37 | 0 | 3.04 ± 0.04 | 66:34 | 0 | 11.4 ± 0.6 | |
9 | 73.28 ± 0.12 | 26.72 ± 0.35 | 0 | 2.73 ± 0.02 | 64:36 | 0 | 8.5 ± 0.4 | |
10 | 74.00 ± 0.12 | 25.38 ± 0.07 | 0.62 ± 0.02 | 4.78 ± 0.04 | 65:35 | 115 ± 4 | 24.2 ± 0.8 | |
11 | 74.06 ± 0.12 | 24.86 ± 0.13 | 0.65 ± 0.04 | 3.91 ± 0.08 | 66:34 | 124 ± 6 | 15.8 ± 1.2 | |
12 | 75.03 ± 0.12 | 24.33 ± 0.12 | 0.64 ± 0.03 | 3.44 ± 0.08 | 67:33 | 122 ± 6 | 11.3 ± 1.2 | |
MNPs-RGD*TFA | 13 | 76.86 ± 0.14 | 23.14 ± 0.22 | 0 | 3.81 ± 0.03 | 68:32 | 0 | 20.9 ± 0.6 |
14 | 76.35 ± 0.14 | 23.65 ± 0.23 | 0 | 3.37 ± 0.04 | 68:32 | 0 | 16.2 ± 0.7 | |
15 | 76.86 ± 0.13 | 23.14 ± 0.32 | 0 | 2.81 ± 0.37 | 68:32 | 0 | 10.3 ± 4.1 | |
16 | 73.59 ± 0.12 | 25.75 ± 0.07 | 0.66 ± 0.07 | 4.72 ± 0.10 | 65:35 | 123 ± 13 | 26.2 ± 1.5 | |
17 | 75.32 ± 0.13 | 24.08 ± 0.07 | 0.60 ± 0.06 | 3.83 ± 0.01 | 67:33 | 115 ± 11 | 16.7 ± 0.5 | |
18 | 76.16 ± 0.16 | 23.31 ± 0.10 | 0.53 ± 0.04 | 3.88 ± 0.14 | 68:32 | 102 ± 7 | 17.3 ± 2.0 |
MNPs-RGD*TFA | DLS Data | |
---|---|---|
Dh, nm | PdI | |
13 | 80 | 0.2 |
14 | 114 | 0.25 |
15 | 112 | 0.21 |
16 | 84 | 0.21 |
17 | 82 | 0.27 |
18 | 82 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demin, A.M.; Vakhrushev, A.V.; Pershina, A.G.; Syomchina, A.A.; Efimova, L.V.; Karabanalov, M.S.; Uimin, M.A.; Byzov, I.V.; Minin, A.S.; Krasnov, V.P. Synthesis of Conjugates of PEG-RGD Derivatives with Fe3O4 Magnetic Nanoparticles for Cell Labelling. J. Compos. Sci. 2024, 8, 486. https://doi.org/10.3390/jcs8120486
Demin AM, Vakhrushev AV, Pershina AG, Syomchina AA, Efimova LV, Karabanalov MS, Uimin MA, Byzov IV, Minin AS, Krasnov VP. Synthesis of Conjugates of PEG-RGD Derivatives with Fe3O4 Magnetic Nanoparticles for Cell Labelling. Journal of Composites Science. 2024; 8(12):486. https://doi.org/10.3390/jcs8120486
Chicago/Turabian StyleDemin, Alexander M., Alexander V. Vakhrushev, Alexandra G. Pershina, Alexandra A. Syomchina, Lina V. Efimova, Maksim S. Karabanalov, Mikhail A. Uimin, Iliya V. Byzov, Artem S. Minin, and Victor P. Krasnov. 2024. "Synthesis of Conjugates of PEG-RGD Derivatives with Fe3O4 Magnetic Nanoparticles for Cell Labelling" Journal of Composites Science 8, no. 12: 486. https://doi.org/10.3390/jcs8120486
APA StyleDemin, A. M., Vakhrushev, A. V., Pershina, A. G., Syomchina, A. A., Efimova, L. V., Karabanalov, M. S., Uimin, M. A., Byzov, I. V., Minin, A. S., & Krasnov, V. P. (2024). Synthesis of Conjugates of PEG-RGD Derivatives with Fe3O4 Magnetic Nanoparticles for Cell Labelling. Journal of Composites Science, 8(12), 486. https://doi.org/10.3390/jcs8120486