Analysis of Oxide Capacitance Changes Based on the Formation–Annihilation of Conductive Filaments in a SiO2/Si-NCs/SiO2 Stack Layer-Based MIS-like Capacitor
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathur, N. Beyond the silicon roadmap. Nature 2002, 419, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36. [Google Scholar] [CrossRef]
- Terabe, K.; Hasegawa, T.; Nakayama, T.; Aono, M. Quantized conductance atomic switch. Nature 2005, 433, 47–50. [Google Scholar] [CrossRef]
- Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Di Ventra, M.; Pershin, Y.V.; Chua, L.O. Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proc. IEEE 2009, 97, 1717–1724. [Google Scholar] [CrossRef]
- Martino, N.; Randriamahazaka, H.N. Memcapacitive properties of poly(3,4-ethylenedioxythiophene) modified electrodes. Electrochem. Commun. 2013, 28, 63–66. [Google Scholar] [CrossRef]
- Haik, M.Y.; Ayesh, A.I.; Abdulrehman, T.; Haik, Y. Novel organic memory devices using Au–Pt–Ag nanoparticles as charge storage elements. Mater. Lett. 2014, 124, 67–72. [Google Scholar] [CrossRef]
- Wu, S.X.; Peng, H.Y.; Wu, T. Concurrent nonvolatile resistance and capacitance switching in LaAlO3. Appl. Phys. Lett. 2011, 98, 093503. [Google Scholar] [CrossRef]
- Salaoru, I.; Khiat, A.; Li, Q.; Berdan, R.; Prodromakis, T. Pulse-induced resistive and capacitive switching in TiO2 thin film devices. Appl. Phys. Lett. 2013, 103, 233513. [Google Scholar] [CrossRef]
- Bessonov, A.A.; Kirikova, M.N.; Petukhov, D.I.; Allen, M.; Ryhänen, T.; Bailey, M.J.A. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 2015, 14, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Park, S.; Yoo, K.-H. Multilevel nonvolatile memristive and memcapacitive switching in stacked graphene sheets. ACS Appl. Mater. Interfaces 2016, 8, 14046–14052. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Beom, K.; Lee, H.; Kang, C.J.; Yoon, T.-S. Nonvolatile reversible capacitance changes through filament formation in a floating-gate metal-oxide-semiconductor capacitor with Ag/CeOx/Pt/HfOx/n-Si structure. Appl. Phys. Lett. 2019, 115, 072106. [Google Scholar] [CrossRef]
- Park, D.; Yang, P.; Kim, H.J.; Beom, K.; Lee, H.H.; Kang, C.J.; Yoon, T.-S. Analog reversible nonvolatile memcapacitance in metal-oxide-semiconductor memcapacitor with ITO/HfOx/Si structure. Appl. Phys. Lett. 2018, 113, 162102. [Google Scholar] [CrossRef]
- E González–Flores, K.; Palacios-Márquez, B.; Alvarez-Quintana, J.; A Pérez–García, S.; Licea–Jiménez, L.; Horley, P.P.; Morales-Sánchez, A. Resistive switching control for conductive Si-nanocrystals embedded in Si/SiO2 multilayers. Nanotechnology 2018, 29, 395203. [Google Scholar] [CrossRef]
- González-Flores, K.; Horley, P.; Cabañas-Tay, S.; Pérez-García, S.; Licea-Jiménez, L.; Palacios-Huerta, L.; Aceves-Mijares, M.; Moreno-Moreno, M.; Morales-Sánchez, A. Analysis of the conduction mechanisms responsible for multilevel bipolar resistive switching of SiO2/Si multilayer structures. Superlattices Microstruct. 2020, 137, 106347. [Google Scholar] [CrossRef]
- González-Flores, K.; Frieiro, J.; Horley, P.; Pérez-García, S.; Palacios-Huerta, L.; Moreno, M.; López-Vidrier, J.; Hernández, S.; Garrido, B.; Morales-Sánchez, A. Ultraviolet, visible and near infrared photoresponse of SiO2/Si/SiO2 multilayer system into a MOS capacitor. Mater. Sci. Semicond. Process. 2021, 134, 106009. [Google Scholar] [CrossRef]
- Limpens, R.; Lesage, A.; Fujii, M.; Gregorkiewicz, T. Size confinement of Si nanocrystals in multinanolayer structures. Sci. Rep. 2015, 5, 17289. [Google Scholar] [CrossRef]
- Jeon, B.; Kim, S. Effect of ITO electrode on conductance quantization and multi-level cells in TiN/SiOx/ITO devices. Ceram. Int. 2023, 49, 425–430. [Google Scholar] [CrossRef]
- Zhao, L.; Ng, W.H.; Knights, A.P.; Stevanovic, D.V.; Mannion, D.J.; Mehonic, A.; Kenyon, A.J. Engineering silicon oxide by argon ion implantation for high performance resistance switching. Front. Mater. 2022, 9, 813407. [Google Scholar] [CrossRef]
- Lee, Y.; Shin, J.; Nam, G.; Chung, D.; Kim, S.; Jeon, J.; Kim, S. Atomic layer deposited SiOX-based resistive switching memory for multi-level cell storage. Metals 2022, 12, 1370. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Nieborek, M.; Mazurak, A.; Jasiński, J. Investigation of the temperature effect on electrical characteristics of Al/SiO2/n++-Si rram devices. Micromachines 2022, 13, 1641. [Google Scholar] [CrossRef] [PubMed]
- Laishram, R.; Alam, M.W.; Souayeh, B.; Singh, N.K. Exploring non-stoichiometric SiOx thin film for non-volatile memory application. J. Alloy Compd. 2024, 978, 173420. [Google Scholar] [CrossRef]
- Lim, E.W.; Ismail, R. Conduction mechanism of valence change resistive switching memory: A survey. Electronics 2015, 4, 586–613. [Google Scholar] [CrossRef]
- Mehonic, A.; Cueff, S.; Wojdak, M.; Hudziak, S.; Labbé, C.; Rizk, R.; Kenyon, A.J. Electrically tailored resistance switching in silicon oxide. Nanotechnology 2012, 23, 455201. [Google Scholar] [CrossRef]
- Samanta, S.; Rahaman, S.Z.; Roy, A.; Jana, S.; Chakrabarti, S.; Panja, R.; Roy, S.; Dutta, M.; Ginnaram, S.; Prakash, A.; et al. Understanding of multi-level resistive switching mechanism in GeOx through redox reaction in H2O2/sarcosine prostate cancer biomarker detection. Sci. Rep. 2017, 7, 11240. [Google Scholar] [CrossRef]
- Liu, Q.; Guan, W.; Long, S.; Jia, R.; Liu, M.; Chen, J. Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl. Phys. Lett. 2008, 92, 012117. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, X.; Yang, R.; Yang, Z.; Yu, W.; Wang, X.; Li, C.; Liu, S.; Chang, R.P.H. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 2016, 9, 3071–3078. [Google Scholar] [CrossRef]
- Chiu, F.-C.; Chou, H.-W.; Lee, J.Y.-M. Electrical conduction mechanisms of metal/La2O3/Si structure. J. Appl. Phys. 2005, 97, 103503. [Google Scholar] [CrossRef]
- Chen, D.; Huang, S.; He, L. Effect of oxygen concentration on resistive switching behavior in silicon oxynitride film. J. Semicond. 2017, 38, 43002. [Google Scholar] [CrossRef]
- Buckwell, M.; Montesi, L.; Mehonic, A.; Reza, O.; Garnett, L.; Munde, M.; Hudziak, S.; Kenyon, A.J. Microscopic and spectroscopic analysis of the nature of conductivity changes during resistive switching in silicon-rich silicon oxide. Phys. Status Solidi 2015, 12, 211–217. [Google Scholar] [CrossRef]
- Yao, J.; Zhong, L.; Natelson, D.; Tour, J.M. Intrinsic resistive switching and memory effects in silicon oxide. Appl. Phys. A 2011, 102, 835–839. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, X.; Chen, K.; Fang, Z.; Li, W.; Xu, J. Resistive switching mechanism in silicon highly rich SiOx (x < 0.75) films based on silicon dangling bonds percolation model. Appl. Phys. Lett. 2013, 102, 042103. [Google Scholar] [CrossRef]
- Omura, Y. Possible equivalent circuit model and physical structures of sputter-deposited silicon oxide film showing resistive switching. ECS J. Solid State Sci. Technol. 2021, 10, 124006. [Google Scholar] [CrossRef]
- Sahu, V.K.; Das, A.K.; Ajimsha, R.; Misra, P. On origin of resistive and capacitive contributions to impedance of memory states in Cu/TiO2/Pt RRAM devices by impedance spectroscopy. Ceram. Int. 2023, 49, 2215–2223. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Germán-Martínez, J.M.; González-Flores, K.E.; Palacios-Márquez, B.; Mendoza-Ramírez, C.; Moreno, M.; Hernández-Martínez, L.; Morales-Sánchez, A. Analysis of Oxide Capacitance Changes Based on the Formation–Annihilation of Conductive Filaments in a SiO2/Si-NCs/SiO2 Stack Layer-Based MIS-like Capacitor. J. Compos. Sci. 2024, 8, 487. https://doi.org/10.3390/jcs8120487
Germán-Martínez JM, González-Flores KE, Palacios-Márquez B, Mendoza-Ramírez C, Moreno M, Hernández-Martínez L, Morales-Sánchez A. Analysis of Oxide Capacitance Changes Based on the Formation–Annihilation of Conductive Filaments in a SiO2/Si-NCs/SiO2 Stack Layer-Based MIS-like Capacitor. Journal of Composites Science. 2024; 8(12):487. https://doi.org/10.3390/jcs8120487
Chicago/Turabian StyleGermán-Martínez, J. Miguel, K. E. González-Flores, B. Palacios-Márquez, C. Mendoza-Ramírez, M. Moreno, L. Hernández-Martínez, and A. Morales-Sánchez. 2024. "Analysis of Oxide Capacitance Changes Based on the Formation–Annihilation of Conductive Filaments in a SiO2/Si-NCs/SiO2 Stack Layer-Based MIS-like Capacitor" Journal of Composites Science 8, no. 12: 487. https://doi.org/10.3390/jcs8120487
APA StyleGermán-Martínez, J. M., González-Flores, K. E., Palacios-Márquez, B., Mendoza-Ramírez, C., Moreno, M., Hernández-Martínez, L., & Morales-Sánchez, A. (2024). Analysis of Oxide Capacitance Changes Based on the Formation–Annihilation of Conductive Filaments in a SiO2/Si-NCs/SiO2 Stack Layer-Based MIS-like Capacitor. Journal of Composites Science, 8(12), 487. https://doi.org/10.3390/jcs8120487